2,231 research outputs found

    Multipole correlations of t2gt_{\rm 2g}-orbital Hubbard model with spin-orbit coupling

    Full text link
    We investigate the ground-state properties of a one-dimensional t2gt_{\rm 2g}-orbital Hubbard model including an atomic spin-orbit coupling by using numerical methods, such as Lanczos diagonalization and density-matrix renormalization group. As the spin-orbit coupling increases, we find a ground-state transition from a paramegnetic state to a ferromagnetic state. In the ferromagnetic state, since the spin-orbit coupling mixes spin and orbital states with complex number coefficients, an antiferro-orbital state with complex orbitals appears. According to the appearance of the complex orbital state, we observe an enhancement of Γ4u\Gamma_{4u} octupole correlations.Comment: 3 pages, 3 figures, To appear in J. Phys. Soc. Jpn. Suppl., Proceedings of ICHE2010 (September 17-20, 2010, Hachioji, Japan

    The nature of the dense core population in the pipe nebula: core and cloud kinematics from C18O observations

    Full text link
    We present molecular-line observations of 94 dark cloud cores identified in the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio Observatory 12m telescope, we obtained spectra of these cores in the J=1-0 transition of C18O. We use the measured core parameters, i.e., antenna temperature, linewidth, radial velocity, radius and mass, to explore the internal kinematics of these cores as well as their radial motions through the larger molecular cloud. We find that the vast majority of the dark extinction cores are true cloud cores rather than the superposition of unrelated filaments. While we identify no significant correlations between the core's internal gas motions and the cores' other physical parameters, we identify spatially correlated radial velocity variations that outline two main kinematic components of the cloud. The largest is a 15pc long filament that is surprisingly narrow both in spatial dimensions and in radial velocity. Beginning in the Stem of the Pipe, this filament displays uniformly small C18O linewidths (dv~0.4kms-1) as well as core to core motions only slightly in excess of the gas sound speed. The second component outlines what appears to be part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated with this component display both larger linewidths and core to core motions than in the main cloud. The Pipe Molecular Ring may represent a primordial structure related to the formation of this cloud.Comment: Accepted to ApJ. 14 pages, 11 figures. Complete table at end of documen

    Magnetically Regulated Star Formation in 3D: The Case of Taurus Molecular Cloud Complex

    Full text link
    We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross-field direction. They are motivated by observations of the Taurus molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an ordered large-scale magnetic field, as well as elongated condensations that are generally perpendicular to the large-scale field. We find that stars form in earnest in such clouds when enough material has settled gravitationally along the field lines that the mass-to-flux ratios of the condensations approach the critical value. Only a small fraction (of order 1% or less) of the nearly magnetically-critical, condensed material is turned into stars per local free-fall time, however. The slow star formation takes place in condensations that are moderately supersonic; it is regulated primarily by magnetic fields, rather than turbulence. The quiescent condensations are surrounded by diffuse halos that are much more turbulent, as observed in the Taurus complex. Strong support for magnetic regulation of star formation in this complex comes from the extremely slow conversion of the already condensed, relatively quiescent C18^{18}O gas into stars, at a rate two orders of magnitude below the maximum, free-fall value. We analyze the properties of dense cores, including their mass spectrum, which resembles the stellar initial mass function.Comment: submitted to Ap

    Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain

    Full text link
    We study the magnetic properties of S=1/2S=1/2 antiferromagnetic Heisenberg chains with inhomogeneity of interaction. Using a quantum Monte Carlo method and an exact diagonalization method, we study bond-impurity effect in the uniform S=1/2S=1/2 chain and also in the bond-alternating chain. Here `bond impurity' means a bond with strength different from those in the bulk or a defect in the alternating order. Local magnetic structures induced by bond impurities are investigated both in the ground state and at finite temperatures, calculating the local magnetization, the local susceptibility and the local field susceptibility. We also investigate the force acting between bond impurities and find the force generally attractive.Comment: 15pages, 34figure

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Relations Between Molecular Cloud Structure Sizes and Line Widths in the Large Magellanic Cloud

    Full text link
    We present a comparative study of the size-line width relation for substructures within six molecular clouds in the Large Magellanic Cloud (LMC) mapped with the Atacama Large Millimeter/submillimeter Array (ALMA). Our sample extends our previous study, which compared a Planck detected cold cloud in the outskirts of the LMC with the 30 Doradus molecular cloud and found the typical line width for 1 pc radius structures to be 5 times larger in 30 Doradus. By observing clouds with intermediate levels of star formation activity, we find evidence that line width at a given size increases with increasing local and cloud-scale 8μ{\mu}m intensity. At the same time, line width at a given size appears to independently correlate with measures of mass surface density. Our results suggest that both virial-like motions due to gravity and local energy injection by star formation feedback play important roles in determining intracloud dynamics.Comment: 20 pages, to appear in ApJ. Data presented in this paper can be found at https://mmwave.astro.illinois.edu/almalmc

    The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure

    Get PDF
    In this paper we present the results of a systematic investigation of an entire population of starless dust cores within a single molecular cloud. Analysis of extinction data shows the cores to be dense objects characterized by a narrow range of density. Analysis of C18O and NH3 molecular-line observations reveals very narrow lines. The non-thermal velocity dispersions measured in both these tracers are found to be subsonic for the large majority of the cores and show no correlation with core mass (or size). Thermal pressure is thus the dominate source of internal gas pressure and support for most of the core population. The total internal gas pressures of the cores are found to be roughly independent of core mass over the entire range of the core mass function (CMF) indicating that the cores are in pressure equilibrium with an external source of pressure. This external pressure is most likely provided by the weight of the surrounding Pipe cloud within which the cores are embedded. Most of the cores appear to be pressure confined, gravitationally unbound entities whose nature, structure and future evolution are determined by only a few physical factors which include self-gravity, the fundamental processes of thermal physics and the simple requirement of pressure equilibrium with the surrounding environment. The observed core properties likely constitute the initial conditions for star formation in dense gas. The entire core population is found to be characterized by a single critical Bonnor-Ebert mass. This mass coincides with the characteristic mass of the Pipe CMF indicating that most cores formed in the cloud are near critical stability. This suggests that the mass function of cores (and the IMF) has its origin in the physical process of thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa

    Star Forming Dense Cloud Cores in the TeV {\gamma}-ray SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is one of the TeV {\gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at ~1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the 12CO(J=2-1) and 13CO(J=2-1) transitions at angular resolution of 90". The most intense core in 13CO, peak C, was also mapped in the 12CO(J=4-3) transition at angular resolution of 38". Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r^{-2.2±\pm0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.Comment: 22 pages, 7 figures, to accepted in The Astrophysical Journal. A full color version with higher resolution figures is available at http://www.a.phys.nagoya-u.ac.jp/~sano/ApJ10/ms_sano.pd

    High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud

    Full text link
    We carried out an unbiased survey for massive dense cores in the giant molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO, 13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15 cores are associated with IRAS point sources whose luminosities are larger than 10^4 Lo, which indicates that massive star formation is occuring within these cores. Five cores including the two with IRAS sources are associated with MSX point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of which is associated with neither IRAS nor MSX point sources. This core shows the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that star formation is also occuring in the core. In total, six C18O cores out of 15 are experienced star formation, and at least 2 of 15 are massive-star forming cores in the eta Car GMC. We found that massive star formation occurs preferentially in cores with larger column density, mass, number density, and smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores in the eta Car GMC are characterized by large line width and Mvir/M on average compared to the cores in other GMCs. We investigated the origin of a large amount of turbulence in the eta Car GMC. We propose the possibility that the large turbulence was pre-existing when the GMC was formed, and is now dissipating. Mechanisms such as multiple supernova explosions in the Carina flare supershell may have contributed to form a GMC with a large amount of turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author changed. Paper with high resolution figures is available at http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar
    corecore