2,231 research outputs found
Multipole correlations of -orbital Hubbard model with spin-orbit coupling
We investigate the ground-state properties of a one-dimensional -orbital Hubbard model including an atomic spin-orbit coupling by using
numerical methods, such as Lanczos diagonalization and density-matrix
renormalization group. As the spin-orbit coupling increases, we find a
ground-state transition from a paramegnetic state to a ferromagnetic state. In
the ferromagnetic state, since the spin-orbit coupling mixes spin and orbital
states with complex number coefficients, an antiferro-orbital state with
complex orbitals appears. According to the appearance of the complex orbital
state, we observe an enhancement of octupole correlations.Comment: 3 pages, 3 figures, To appear in J. Phys. Soc. Jpn. Suppl.,
Proceedings of ICHE2010 (September 17-20, 2010, Hachioji, Japan
The nature of the dense core population in the pipe nebula: core and cloud kinematics from C18O observations
We present molecular-line observations of 94 dark cloud cores identified in
the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio
Observatory 12m telescope, we obtained spectra of these cores in the J=1-0
transition of C18O. We use the measured core parameters, i.e., antenna
temperature, linewidth, radial velocity, radius and mass, to explore the
internal kinematics of these cores as well as their radial motions through the
larger molecular cloud. We find that the vast majority of the dark extinction
cores are true cloud cores rather than the superposition of unrelated
filaments. While we identify no significant correlations between the core's
internal gas motions and the cores' other physical parameters, we identify
spatially correlated radial velocity variations that outline two main kinematic
components of the cloud. The largest is a 15pc long filament that is
surprisingly narrow both in spatial dimensions and in radial velocity.
Beginning in the Stem of the Pipe, this filament displays uniformly small C18O
linewidths (dv~0.4kms-1) as well as core to core motions only slightly in
excess of the gas sound speed. The second component outlines what appears to be
part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated
with this component display both larger linewidths and core to core motions
than in the main cloud. The Pipe Molecular Ring may represent a primordial
structure related to the formation of this cloud.Comment: Accepted to ApJ. 14 pages, 11 figures. Complete table at end of
documen
Magnetically Regulated Star Formation in 3D: The Case of Taurus Molecular Cloud Complex
We carry out three-dimensional MHD simulations of star formation in
turbulent, magnetized clouds, including ambipolar diffusion and feedback from
protostellar outflows. The calculations focus on relatively diffuse clouds
threaded by a strong magnetic field capable of resisting severe tangling by
turbulent motions and retarding global gravitational contraction in the
cross-field direction. They are motivated by observations of the Taurus
molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an
ordered large-scale magnetic field, as well as elongated condensations that are
generally perpendicular to the large-scale field. We find that stars form in
earnest in such clouds when enough material has settled gravitationally along
the field lines that the mass-to-flux ratios of the condensations approach the
critical value. Only a small fraction (of order 1% or less) of the nearly
magnetically-critical, condensed material is turned into stars per local
free-fall time, however. The slow star formation takes place in condensations
that are moderately supersonic; it is regulated primarily by magnetic fields,
rather than turbulence. The quiescent condensations are surrounded by diffuse
halos that are much more turbulent, as observed in the Taurus complex. Strong
support for magnetic regulation of star formation in this complex comes from
the extremely slow conversion of the already condensed, relatively quiescent
CO gas into stars, at a rate two orders of magnitude below the maximum,
free-fall value. We analyze the properties of dense cores, including their mass
spectrum, which resembles the stellar initial mass function.Comment: submitted to Ap
Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain
We study the magnetic properties of antiferromagnetic Heisenberg
chains with inhomogeneity of interaction. Using a quantum Monte Carlo method
and an exact diagonalization method, we study bond-impurity effect in the
uniform chain and also in the bond-alternating chain. Here `bond
impurity' means a bond with strength different from those in the bulk or a
defect in the alternating order. Local magnetic structures induced by bond
impurities are investigated both in the ground state and at finite
temperatures, calculating the local magnetization, the local susceptibility and
the local field susceptibility. We also investigate the force acting between
bond impurities and find the force generally attractive.Comment: 15pages, 34figure
Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains
We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model
coupled to a lattice distortion by a quantum Monte Carlo method. Investigating
the ground state energy of the static bond-alternating chain, we find that the
instability to a dimerized chain depends on the value of the spin-phonon
coupling, unlike the case of S=1/2. The spin state is the dimer state or the
uniform Haldane state depending on whether the lattice distorts or not,
respectively. At an intermediate value of the spin-phonon coupling, we find the
first-order transition between the two states. We also find the coexistence of
the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos,
replaced figure
Relations Between Molecular Cloud Structure Sizes and Line Widths in the Large Magellanic Cloud
We present a comparative study of the size-line width relation for
substructures within six molecular clouds in the Large Magellanic Cloud (LMC)
mapped with the Atacama Large Millimeter/submillimeter Array (ALMA). Our sample
extends our previous study, which compared a Planck detected cold cloud in the
outskirts of the LMC with the 30 Doradus molecular cloud and found the typical
line width for 1 pc radius structures to be 5 times larger in 30 Doradus. By
observing clouds with intermediate levels of star formation activity, we find
evidence that line width at a given size increases with increasing local and
cloud-scale 8m intensity. At the same time, line width at a given size
appears to independently correlate with measures of mass surface density. Our
results suggest that both virial-like motions due to gravity and local energy
injection by star formation feedback play important roles in determining
intracloud dynamics.Comment: 20 pages, to appear in ApJ. Data presented in this paper can be found
at https://mmwave.astro.illinois.edu/almalmc
The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure
In this paper we present the results of a systematic investigation of an
entire population of starless dust cores within a single molecular cloud.
Analysis of extinction data shows the cores to be dense objects characterized
by a narrow range of density. Analysis of C18O and NH3 molecular-line
observations reveals very narrow lines. The non-thermal velocity dispersions
measured in both these tracers are found to be subsonic for the large majority
of the cores and show no correlation with core mass (or size). Thermal pressure
is thus the dominate source of internal gas pressure and support for most of
the core population. The total internal gas pressures of the cores are found to
be roughly independent of core mass over the entire range of the core mass
function (CMF) indicating that the cores are in pressure equilibrium with an
external source of pressure. This external pressure is most likely provided by
the weight of the surrounding Pipe cloud within which the cores are embedded.
Most of the cores appear to be pressure confined, gravitationally unbound
entities whose nature, structure and future evolution are determined by only a
few physical factors which include self-gravity, the fundamental processes of
thermal physics and the simple requirement of pressure equilibrium with the
surrounding environment. The observed core properties likely constitute the
initial conditions for star formation in dense gas. The entire core population
is found to be characterized by a single critical Bonnor-Ebert mass. This mass
coincides with the characteristic mass of the Pipe CMF indicating that most
cores formed in the cloud are near critical stability. This suggests that the
mass function of cores (and the IMF) has its origin in the physical process of
thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa
Star Forming Dense Cloud Cores in the TeV {\gamma}-ray SNR RX J1713.7-3946
RX J1713.7-3946 is one of the TeV {\gamma}-ray supernova remnants (SNRs)
emitting synchrotron X rays. The SNR is associated with molecular gas located
at ~1 kpc. We made new molecular observations toward the dense cloud cores,
peaks A, C and D, in the SNR in the 12CO(J=2-1) and 13CO(J=2-1) transitions at
angular resolution of 90". The most intense core in 13CO, peak C, was also
mapped in the 12CO(J=4-3) transition at angular resolution of 38". Peak C shows
strong signs of active star formation including bipolar outflow and a
far-infrared protostellar source and has a steep gradient with a
r^{-2.20.4} variation in the average density within radius r. Peak C and
the other dense cloud cores are rim-brightened in synchrotron X rays,
suggesting that the dense cloud cores are embedded within or on the outer
boundary of the SNR shell. This confirms the earlier suggestion that the X rays
are physically associated with the molecular gas (Fukui et al. 2003). We
present a scenario where the densest molecular core, peak C, survived against
the blast wave and is now embedded within the SNR. Numerical simulations of the
shock-cloud interaction indicate that a dense clump can indeed survive shock
erosion, since shock propagation speed is stalled in the dense clump.
Additionally, the shock-cloud interaction induces turbulence and magnetic field
amplification around the dense clump that may facilitate particle acceleration
in the lower-density inter-clump space leading to the enhanced synchrotron X
rays around dense cores.Comment: 22 pages, 7 figures, to accepted in The Astrophysical Journal. A full
color version with higher resolution figures is available at
http://www.a.phys.nagoya-u.ac.jp/~sano/ApJ10/ms_sano.pd
High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud
We carried out an unbiased survey for massive dense cores in the giant
molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO,
13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15
cores are associated with IRAS point sources whose luminosities are larger than
10^4 Lo, which indicates that massive star formation is occuring within these
cores. Five cores including the two with IRAS sources are associated with MSX
point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of
which is associated with neither IRAS nor MSX point sources. This core shows
the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that
star formation is also occuring in the core. In total, six C18O cores out of 15
are experienced star formation, and at least 2 of 15 are massive-star forming
cores in the eta Car GMC. We found that massive star formation occurs
preferentially in cores with larger column density, mass, number density, and
smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores
in the eta Car GMC are characterized by large line width and Mvir/M on average
compared to the cores in other GMCs. We investigated the origin of a large
amount of turbulence in the eta Car GMC. We propose the possibility that the
large turbulence was pre-existing when the GMC was formed, and is now
dissipating. Mechanisms such as multiple supernova explosions in the Carina
flare supershell may have contributed to form a GMC with a large amount of
turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author
changed. Paper with high resolution figures is available at
http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar
- …
