4,228 research outputs found
Design of wideband vibration-based electromagnetic generator by means of dual-resonator
This paper describes the design of a wideband electromagnetic energy harvester that utilizes a novel dual-resonator method to improve the operational frequency range of the vibration-based generator. The device consists of two separate resonator systems (coil and magnet), which each comply with their respective resonance frequencies. This is because both resonators are designed in such a way that both magnet and coil components will oscillate at an additive phase angle, and hence create greater relative motion between the two dominating resonance frequencies, which realizes the wideband generator. Each resonator system consists of a distinctive cantilever beam, one attached with four magnets and steel keepers, the other attached with a copper coil and stainless steel holder as the free end mass. Both cantilevers are clamped and fitted to a common base that is subjected to a vibration source. Basic analytical models are derived and a numerical model is implemented in MATLAB-Simulink. Electromagnetic, structural modal and static mechanical analysis for the design of the prototype are completed using ANSYS finite element tools. For a 0.8 m s−2 acceleration, the open-loop voltage obtained from the experiment shows a good correlation with those from the simulation. Peak induced voltage is measured to be 259.5Vrms as compared to 240.9Vrms from the simulator at 21.3 Hz, which implies an error range of 7.7%. The results also indicate that there is a maximum of 58.22% improvement in the induced voltage within the intermediate region which occurs at the intersection point between the output response plots of two single resonator generators
Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications
Due to the increasing demand for harvesting energy from environmental vibration, for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted great interest from various parties and become one of the most common approaches to convert redundant mechanical energy into electrical energy. As the output voltage produces from a piezoelectric material depends greatly on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beams that have been overseen in most of the prior literature. Both analytical and finite element models are derived and the resultant strain distributions in the beam are computed based on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a vibration-based energy harvester system is verified. Lastly, experimental results comparing the power density for a triangular and rectangular piezoelectric beams are also presented to validate the finding of the study and the claim as suggested in the literature is verified
Local Measurement of Microwave Response with Local Tunneling Spectra Using Near Field Microwave Microscopy
We have designed and built a near-field scanning microwave microscope, which
has been used to measure the local microwave response and the local
density-of-states (LDOS) in the area including the boundary between the gold
deposited and the non-deposited region on highly-orientated pyrolytic graphite
at a frequency of about 7.3 GHz. We have succeeded in measuring the spatial
variation of both the LDOS and the surface resistance. It can be observed that
the surface resistance in gold deposited region with the metallic tunneling
spectra is smaller than that in the non-deposited region with the U-shaped
tunneling spectra.Comment: 3 pages, 3 figures
Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO
Using a nanogram-sized single crystal of BSCCO attached to a microcantilever
we demonstrate in a direct way that in magnetic fields nearly parallel to the
{\it ab} plane the magnetic field penetrates the sample in the form of
Josephson vortices rather than in the form of a tilted vortex lattice. We
further investigate the relation between the Josephson vortices and the pancake
vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure
RSM and v2 -f predictions of an impinging jet in a cross flow on a heated surface and on a pedestal
The objective of this study is to compare the performance of the v 2 -f and the Reynolds Stress Model (RSM) turbulence model with a two-layer wall treatment for the prediction of the mean velocity field, the turbulence characteristics and the heat transfer rate of the normal impinging jet and also impinging jet in a cross-flow configuration. The numerical predictions are validated against detailed experimental measurements, using PIV and a low-wavelength infrared imaging system, for the measurement of turbulent flow features and surface temperatures. A linear pressure-strain model is used in the RSM. The turbulent heat fluxes are modeled by the eddy-diffusivity hypothesis with a constant value of the turbulent Prandtl number. The mesh is refined enough near the solid walls (y+≈1) to adequately resolve the boundary layers. The results show several complex flow-related phenomena that affect the cooling performance, such as stagnation point, separation region, curvature effects and re-circulating wake flows. These phenomena have to be accurately captured before a good prediction of the heat transfer rate can be attained. A comparison between the v 2 -f and RSM results in the stagnation region, in the other near-wall regions and in the free shear region will be presented in order to evaluate the performance of the two models
Improving the diagnosis, management, and outcomes of children with pneumonia: Where are the gaps?
Pneumonia is the greatest contributor to childhood mortality and morbidity in resource-poor regions, while in high-income countries it is one of the most common reasons for clinic attendance and hospitalization in this age group. Furthermore, pneumonia in children increases the risk of developing chronic pulmonary disorders in later adult life. While substantial advances in managing childhood pneumonia have been made, many issues remain, some of which are highlighted in this perspective. Multiple studies are required as many factors that influence outcomes, such as etiology, patient characteristics, and prevention strategies can vary between and within countries and regions. Also, outside of vaccine studies, most randomized controlled trials (RCTs) on pneumonia have been based in resource-poor countries where the primary aim is usually prevention of mortality. Few RCTs have focused on medium to long-term outcomes or prevention. We propose different tiers of primary outcomes, where in resource-rich countries medium to long-term sequelae should also be included and not just the length of hospitalization and readmission rates
Symmetric mode resonance of bubbles near a rigid boundary - the nonlinear case with time delay effects
A fundamental understanding of the effect of a surface on the resonance frequency of bubbles will be useful in the future development of diagnostic medical ultrasound equipment, and specifically in the area of targeted contrast agents for the screening and possible treatment of colon cancer. In this work we turn to the wall effects on the nonlinear resonance frequency response of air bubbles in water, following on from an earlier work which considered linear interactions (E. M. B. Payne, S. Illesinghe, A. Ooi, R. Manasseh, J. Acoust Soc. Am. 118, 2841-2849 (2005)). Numerical results for micron-sized bubbles near a rigid boundary are presented, showing the shift in frequency caused by the presence of the boundary and the presence of other bubbles. Time delay effects are also included, showing a damping of the frequency response. Simulations are limited to the special case where all bubbles are in phase (i.e., the symmetric mode), which refers to the case where all bubbles have the same initial conditions and are subjected to the same excitation pressure field. As a result they have identical time histories. An experimental method for measuring the frequency response of a single bubble attached to a surface is also briefly mentioned
- …
