1,750 research outputs found
Cotorsion torsion triples and the representation theory of filtered hierarchical clustering
We give a full classification of representation types of the subcategories of
representations of an rectangular grid with monomorphisms (dually,
epimorphisms) in one or both directions, which appear naturally in the context
of clustering as two-parameter persistent homology in degree zero. We show that
these subcategories are equivalent to the category of all representations of a
smaller grid, modulo a finite number of indecomposables. This equivalence is
constructed from a certain cotorsion torsion triple, which is obtained from a
tilting subcategory generated by said indecomposables.Comment: 39 pages; corrected the lists appearing in Cor. 1.6 and minor changes
throughou
Dynamical solutions of a quantum Heisenberg spin glass model
We consider quantum-dynamical phenomena in the ,
infinite-range quantum Heisenberg spin glass. For a fermionic generalization of
the model we formulate generic dynamical self-consistency equations. Using the
Popov-Fedotov trick to eliminate contributions of the non-magnetic fermionic
states we study in particular the isotropic model variant on the spin space.
Two complementary approximation schemes are applied: one restricts the quantum
spin dynamics to a manageable number of Matsubara frequencies while the other
employs an expansion in terms of the dynamical local spin susceptibility. We
accurately determine the critical temperature of the spin glass to
paramagnet transition. We find that the dynamical correlations cause an
increase of by 2% compared to the result obtained in the spin-static
approximation. The specific heat exhibits a pronounced cusp at .
Contradictory to other reports we do not observe a maximum in the -curve
above .Comment: 8 pages, 7 figure
Selforganized 3-band structure of the doped fermionic Ising spin glass
The fermionic Ising spin glass is analyzed for arbitrary filling and for all
temperatures. A selforganized 3-band structure of the model is obtained in the
magnetically ordered phase. Deviation from half filling generates a central
nonmagnetic band, which becomes sharply separated at T=0 by (pseudo)gaps from
upper and lower magnetic bands. Replica symmetry breaking effects are derived
for several observables and correlations. They determine the shape of the
3-band DoS, and, for given chemical potential, influence the fermion filling
strongly in the low temperature regime.Comment: 13 page
Tricritical behaviour of Ising spin glasses with charge fluctuations
We show that tricritical points displaying unusal behaviour exist in phase
diagrams of fermionic Ising spin glasses as the chemical potential or the
filling assumes characteristic values. Exact results for infinite range
interaction and a one loop renormalization group analysis of thermal
tricritical fluctuations for finite range models are presented. Surprising
similarities with zero temperature transitions and a new tricritical
point of metallic quantum spin glasses are derived.Comment: 4 pages, 1 Postscript figure, minor change
Field Theory of Mesoscopic Fluctuations in Superconductor/Normal-Metal Systems
Thermodynamic and transport properties of normal disordered conductors are
strongly influenced by the proximity of a superconductor. A cooperation between
mesoscopic coherence and Andreev scattering of particles from the
superconductor generates new types of interference phenomena. We introduce a
field theoretic approach capable of exploring both averaged properties and
mesoscopic fluctuations of superconductor/normal-metal systems.
As an example the method is applied to the study of the level statistics of a
SNS-junction.Comment: 4 pages, REVTEX, two eps-figures included; submitted to JETP letter
Random Matrix Theory of a Chaotic Andreev Quantum Dot
A new universality class distinct from the standard Wigner-Dyson ones is
identified. This class is realized by putting a metallic quantum dot in contact
with a superconductor, while applying a magnetic field so as to make the
pairing field effectively vanish on average. A random-matrix description of the
spectral and transport properties of such a quantum dot is proposed. The
weak-localization correction to the tunnel conductance is nonzero and results
from the depletion of the density of states due to the coupling with the
superconductor. Semiclassically, the depletion is caused by a a mode of
phase-coherent long-range propagation of electrons and holes.Comment: minor changes, 4 REVTeX page
Metallic spin glasses
Recent work on the zero temperature phases and phase transitions of strongly
random electronic system is reviewed. The transition between the spin glass and
quantum paramagnet is examined, for both metallic and insulating systems.
Insight gained from the solution of infinite range models leads to a quantum
field theory for the transition between a metallic quantum paramagnetic and a
metallic spin glass. The finite temperature phase diagram is described and
crossover functions are computed in mean field theory. A study of fluctuations
about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference
on Non-Fermi liquids, 25 pages, requires IOP style file
- …
