296 research outputs found

    Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients

    Get PDF
    Background Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown. Methods Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding. Results A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55). Conclusions Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218. opens in new tab.

    Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating

    Get PDF
    Electrochemical dealloying of Pt–Si produces Pt films with hierarchical pore structure and superior performance in butadiene hydrogenation.</p

    Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells

    Get PDF
    Photodynamic therapy (PDT) using 5-aminolaevulinic acid (ALA) to drive production of an intracellular photosensitiser, protoporphyrin IX (PpIX), is a promising cancer treatment. However, ALA-PDT is still suboptimal for thick or refractory tumours. Searching for new approaches, we tested a known inducer of cellular differentiation, methotrexate (MTX), in combination with ALA-PDT in LNCaP cells. Methotrexate alone promoted growth arrest, differentiation, and apoptosis. Methotrexate pretreatment (1 mg l−1, 72 h) followed by ALA (0.3 mM, 4 h) resulted in a three-fold increase in intracellular PpIX, by biochemical and confocal analyses. After exposure to 512 nm light, killing was significantly enhanced in MTX-preconditioned cells. The reverse order of treatments, ALA-PDT followed by MTX, yielded no enhancement. Methotrexate caused a similar relative increase in PpIX, whether cells were incubated with ALA, methyl-ALA, or hexyl-ALA, arguing against a major effect upon ALA transport. Searching for an effect among porphyrin synthetic enzymes, we found that coproporphyrinogen oxidase (CPO) was increased three-fold by MTX at the mRNA and protein levels. Transfection of LNCaP cells with a CPO-expressing vector stimulated the accumulation of PpIX. Our data suggest that MTX, when used to modulate intracellular production of endogenous PpIX, may provide a new combination PDT approach for certain cancers

    Differentiation enhances aminolevulinic acid-dependent photodynamic treatment of LNCaP prostate cancer cells

    Get PDF
    Photodynamic therapy using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) may be applied to the treatment of neoplasms in a variety of organs. In order to enhance existing regimens of photodynamic therapy, we investigated the effects of adding differentiation therapy to photodynamic therapy in human prostate cancer cells in vitro. The objective of differentiation therapy per se is to reverse the lack of differentiation in cancer cells using pharmacological agents. The motivation for this study was to exploit the differentiation-dependent expression of some heme enzymes to enhance tumour cell toxicity of ALA-photodynamic therapy. A short course of differentiation therapy was applied to increase PpIX formation during subsequent ALA exposure. Using the synthetic androgen R1881, isomers of retinoic acid, and analogues of vitamin D for 3 to 4 days, exogenous ALA-dependent PpIX formation in LNCaP cells was increased, along with markers for growth arrest and for differentiation. As a consequence of higher PpIX levels, cytotoxic effects of visible light exposure were also enhanced. Short-term differentiation therapy increased not only the overall PpIX production but also reduced that fraction of cells that contained low PpIX levels as demonstrated by flow cytometry and fluorescence microscopy. This study suggests that it will be feasible to develop protocols combining short-term differentiation therapy with photodynamic therapy for enhanced photosensitisation

    The role of reperfusion injury in photodynamic therapy with 5-aminolaevulinic acid – a study on normal rat colon

    Get PDF
    Reperfusion injury can occur when blood flow is restored after a transient period of ischaemia. The resulting cascade of reactive oxygen species damages tissue. This mechanism may contribute to the tissue damage produced by 5-aminolaevulinic acid-induced photodynamic therapy, if this treatment temporarily depletes oxygen in an area that is subsequently reoxygenated. This was investigated in the normal colon of female Wistar rats. All animals received 200 mg kg−1 5-aminolaevulinic acid intravenously 2 h prior to 25 J (100 mW) of 628 nm light, which was delivered continuously or fractionated (5 J/150 second dark interval/20 J). Animals were recovered following surgery, killed 3 days later and the photodynamic therapy lesion measured macroscopically. The effects of reperfusion injury were removed from the experiments either through the administration of free radical scavengers (superoxide dismutase (10 mg kg−1) and catalase (7.5 mg kg−1) in combination) or allopurinol (an inhibitor of xanthine oxidase (50 mg kg−1)). Prior administration of the free radical scavengers and allopurinol abolished the macroscopic damage produced by 5-aminolaevulinic acid photodynamic therapy in this model, regardless of the light regime employed. As the specific inhibitor of xanthine oxidase (allopurinol) protected against photodynamic therapy damage, it is concluded that reperfusion injury is involved in the mechanism of photodynamic therapy in the rat colon
    corecore