1,539 research outputs found
Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity
We report on experimental observation of radiation-pressure induced effects
in a high-power optical cavity. These effects play an important role in next
generation gravitational wave (GW) detectors, as well as in quantum
non-demolition (QND) interferometers. We measure the properties of an optical
spring, created by coupling of an intense laser field to the pendulum mode of a
suspended mirror; and also the parametric instability (PI) that arises from the
nonlinear coupling between acoustic modes of the cavity mirrors and the cavity
optical mode. Specifically, we measure an optical rigidity of N/m, and PI value .Comment: 4 pages, 3 figure
A squeezed state source using radiation pressure induced rigidity
We propose an experiment to extract ponderomotive squeezing from an
interferometer with high circulating power and low mass mirrors. In this
interferometer, optical resonances of the arm cavities are detuned from the
laser frequency, creating a mechanical rigidity that dramatically suppresses
displacement noise. After taking into account imperfection of optical elements,
laser noise, and other technical noise consistent with existing laser and
optical technologies and typical laboratory environments, we expect the output
light from the interferometer to have measurable squeezing of ~5 dB, with a
frequency-independent squeeze angle for frequencies below 1 kHz. This squeeze
source is well suited for injection into a gravitational-wave interferometer,
leading to improved sensitivity from reduction in the quantum noise.
Furthermore, this design provides an experimental test of quantum-limited
radiation pressure effects, which have not previously been tested.Comment: 15 pages, 6 figures, submitted to Phys. Rev.
Recent results of a seismically isolated optical table prototype designed for advanced LIGO
The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed
Power scalable TEM(oo) CW Nd: YAG laser with thermal lens compensation
We present finite-element analyzes and experimental results to validate our approach for building high-power single-mode Nd:YAG lasers. We show that the thermooptical and thermomechanical properties of a slab laser can be controlled. This is essential for the use of the proposed unstable resonator. We include demonstration of an efficient subscale laser operating at 20 W TEM00.D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway and M. W. Hamilto
Political strategies of external support for democratization
Political strategies of external support to democratization are contrasted and critically examined in respect of the United States and European Union. The analysis begins by defining its terms of reference and addresses the question of what it means to have a strategy. The account briefly notes the goals lying behind democratization support and their relationship with the wider foreign policy process, before considering what a successful strategy would look like and how that relates to the selection of candidates. The literature's attempts to identify strategy and its recommendations for better strategies are compared and assessed. Overall, the article argues that the question of political strategies of external support for democratization raises several distinct but related issues including the who?, what?, why?, and how? On one level, strategic choices can be expected to echo the comparative advantage of the "supporter." On a different level, the strategies cannot be divorced from the larger foreign policy framework. While it is correct to say that any sound strategy for support should be grounded in a theoretical understanding of democratization, the literature on strategies reveals something even more fundamental: divergent views about the nature of politics itself. The recommendations there certainly pinpoint weaknesses in the actual strategies of the United States and Europe but they have their own limitations too. In particular, in a world of increasing multi-level governance strategies for supporting democratization should go beyond preoccupation with just an "outside-in" approach
Decoupling Local Ownership? The Lost Opportunities for Grassroots Women’s Involvement in Liberian Peacebuilding
Civil society organizations and grassroots groups are often unable to play an active role in post-conflict reconstruction and peacebuilding. A possible explanation for the observed challenges in peacebuilding is the gap or decoupling between international expectations and norms from practical action, local norms and capacities. External actors are often overly instrumental and operate according to a general template that fails to start from what the local capacities might actually be. This often leads to the decoupling of general values from practical action, which helps account for the observed barriers of engaging local civil and community organizations in reconstruction. We examine the different types of decoupling and the challenges these present. We evaluate our general theoretical argument using evidence based on the experiences of Liberian women’s civil society organizations. Given the compliance of the Liberian government with international norms, we should expect external actors to have an easier task in incorporating civil society and women’s organizations in the post-conflict reconstruction process; yet, the record appears to be the opposite. While we present the ‘tragic’ aspect of this relationship between international norms and local practice, we also suggest opportunities for ‘hybrid’ alternatives
Quantum-Dense Metrology
Quantum metrology utilizes entanglement for improving the sensitivity of
measurements. Up to now the focus has been on the measurement of just one out
of two non-commuting observables. Here we demonstrate a laser interferometer
that provides information about two non-commuting observables, with
uncertainties below that of the meter's quantum ground state. Our experiment is
a proof-of-principle of quantum dense metrology, and uses the additional
information to distinguish between the actual phase signal and a parasitic
signal due to scattered and frequency shifted photons. Our approach can be
readily applied to improve squeezed-light enhanced gravitational-wave detectors
at non-quantum noise limited detection frequencies in terms of a sub shot-noise
veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
Exclusive neuronal expression of SUCLA2 in the human brain
SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex
- …
