3,073 research outputs found
THE IMPACT OF RECLAMATION ON ACCEPTABLE STRIP MINING ROYALTY PAYMENTS
Resource /Energy Economics and Policy,
Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079
We present spectroscopic data of ionized gas in the disk--halo regions of
three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength
range from [\ion{O}{2}] 3727\AA to [\ion{S}{2}] 6716.4\AA.
The inclusion of the [\ion{O}{2}] emission provides new constraints on the
properties of the diffuse ionized gas (DIG), in particular, the origin of the
observed spatial variations in the line intensity ratios. We used three
different methods to derive electron temperatures, abundances and ionization
fractions along the slit. The increase in the [\ion{O}{2}]/H line ratio
towards the halo in all three galaxies requires an increase either in electron
temperature or in oxygen abundance. Keeping the oxygen abundance constant
yields the most reasonable results for temperature, abundances, and ionization
fractions. Since a constant oxygen abundance seems to require an increase in
temperature towards the halo, we conclude that gradients in the electron
temperature play a significant role in the observed variations in the optical
line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure
Exploring the phase diagram of the two-impurity Kondo problem
A system of two exchange-coupled Kondo impurities in a magnetic field gives
rise to a rich phase space hosting a multitude of correlated phenomena.
Magnetic atoms on surfaces probed through scanning tunnelling microscopy
provide an excellent platform to investigate coupled impurities, but typical
high Kondo temperatures prevent field-dependent studies from being performed,
rendering large parts of the phase space inaccessible. We present an integral
study of pairs of Co atoms on insulating Cu2N/Cu(100), which each have a Kondo
temperature of only 2.6 K. In order to cover the different regions of the phase
space, the pairs are designed to have interaction strengths similar to the
Kondo temperature. By applying a sufficiently strong magnetic field, we are
able to access a new phase in which the two coupled impurities are
simultaneously screened. Comparison of differential conductance spectra taken
on the atoms to simulated curves, calculated using a third order transport
model, allows us to independently determine the degree of Kondo screening in
each phase.Comment: paper: 14 pages, 4 figures; supplementary: 3 pages, 1 figure, 1 tabl
FUSE Detection of Galactic OVI Emission in the Halo above the Perseus Arm
Background observations obtained with the Far Ultraviolet Spectroscopic
Explorer (FUSE) toward l=95.4, b=36.1 show OVI 1032,1038 in emission. This
sight line probes a region of stronger-than-average soft X-ray emission in the
direction of high-velocity cloud Complex C above a part of the disk where
Halpha filaments rise into the halo. The OVI intensities, 1600+/-300
ph/s/cm^2/sr (1032A) and 800+/-300 ph/s/cm^2/sr (1038A), are the lowest
detected in emission in the Milky Way to date. A second sight line nearby
(l=99.3, b=43.3) also shows OVI 1032 emission, but with too low a
signal-to-noise ratio to obtain reliable measurements. The measured
intensities, velocities, and FWHMs of the OVI doublet and the CII* line at
1037A are consistent with a model in which the observed emission is produced in
the Galactic halo by hot gas ejected by supernovae in the Perseus arm. An
association of the observed gas with Complex C appears unlikely.Comment: accepted for publication in ApJL, 11 pages including 3 figure
WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium
A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35
deg), which samples regions of the Local (Orion) spiral arm and the more
distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM)
in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in
emission-line investigations of diffuse gas in other galaxies are confirmed in
the Milky Way and extended to much fainter emission. We find that the [S
II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities
decrease. For the more distant Perseus arm emission, the increase in these
ratios is a strong function of Galactic latitude and thus, of height above the
Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha
intensity. Scatter in this ratio appears to be physically significant, and maps
of it suggest regions with similar ratios are spatially correlated. The Perseus
arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%.
With [S II]/[N II] fairly constant over a large range of H-Alpha intensities,
the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an
increase in temperature. Such an interpretation allows us to estimate the
temperature and ionization conditions in our large sample of observations. We
find that WIM temperatures range from 6,000 K to 9,000 K with temperature
increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha
and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect
changes in the local ionization conditions (e.g. the S+/S++ ratio). We also
measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc,
confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided
here, original PS figures at link below. Accepted for publication in ApJ.
More information about the WHAM project can be found at
http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now
contains the proper points. No other changes have been mad
Boundedness properties of fermionic operators
The fermionic second quantization operator is shown to be
bounded by a power of the number operator given that the operator
belongs to the -th von Neumann-Schatten class, . Conversely,
number operator estimates for imply von Neumann-Schatten
conditions on . Quadratic creation and annihilation operators are treated as
well.Comment: 15 page
Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies
Spatial variations of the [S II]/H-Alpha and [N II]/H-Alpha line intensity
ratios observed in the gaseous halo of the Milky Way and other galaxies are
inconsistent with pure photoionization models. They appear to require a
supplemental heating mechanism that increases the electron temperature at low
densities n_e. This would imply that in addition to photoionization, which has
a heating rate per unit volume proportional to n_e^2, there is another source
of heat with a rate per unit volume proportional to a lower power of n_e. One
possible mechanism is the dissipation of interstellar plasma turbulence, which
according to Minter & Spangler (1997) heats the ionized interstellar medium in
the Milky Way at a rate ~ 1x10^-25 n_e ergs cm^-3 s^-1. If such a source were
present, it would dominate over photoionization heating in regions where n_e <
0.1 cm^-3, producing the observed increases in the [S II]/H-Alpha and [N
II]/H-Alpha intensity ratios at large distances from the galactic midplane, as
well as accounting for the constancy of [S II]/[N II], which is not explained
by pure photoionization. Other supplemental heating sources, such as magnetic
reconnection, cosmic rays, or photoelectric emission from small grains, could
also account for these observations, provided they supply to the warm ionized
medium ~ 10^-5 ergs s^-1 per cm^2 of Galactic disk.Comment: 10 pages, 1 figur
- …
