8,796 research outputs found

    Clustering-Enhanced Stochastic Gradient MCMC for Hidden Markov Models with Rare States

    Full text link
    MCMC algorithms for hidden Markov models, which often rely on the forward-backward sampler, suffer with large sample size due to the temporal dependence inherent in the data. Recently, a number of approaches have been developed for posterior inference which make use of the mixing of the hidden Markov process to approximate the full posterior by using small chunks of the data. However, in the presence of imbalanced data resulting from rare latent states, the proposed minibatch estimates will often exclude rare state data resulting in poor inference of the associated emission parameters and inaccurate prediction or detection of rare events. Here, we propose to use a preliminary clustering to over-sample the rare clusters and reduce variance in gradient estimation within Stochastic Gradient MCMC. We demonstrate very substantial gains in predictive and inferential accuracy on real and synthetic examples

    Spin correlated interferometry for polarized and unpolarized photons on a beam splitter

    Get PDF
    Spin interferometry of the 4th order for independent polarized as well as unpolarized photons arriving simultaneously at a beam splitter and exhibiting spin correlation while leaving it, is formulated and discussed in the quantum approach. Beam splitter is recognized as a source of genuine singlet photon states. Also, typical nonclassical beating between photons taking part in the interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at http://m3k.grad.hr/pavici

    Electrical phase change of CVD-grown Ge-Sb-Te thin film device

    No full text
    A prototype Ge-Sb-Te thin film phase-change memory device has been fabricated and reversible threshold and phase change switching demonstrated electrically, with a threshold voltage of 1.5 – 1.7 V. The Ge-Sb-Te thin film was fabricated by chemical vapour deposition (CVD) at atmospheric pressure using GeCl4, SbCl5, and Te precursors with reactive gas H2 at reaction temperature 780 °C and substrate temperature 250 °C. The surface morphology and composition of the CVD-grown Ge-Sb-Te thin film has been characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The CVD-grown Ge-Sb-Te thin film shows promise for the phase change memory applications

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Edge Extraction Based on Aperture Synthesis in Optical Scanning Holography

    Get PDF
    Poster Session (DW2A): no. DW2A.6We present an edge extraction method based on aperture synthesis with different pupils in optical scanning holography. By utilizing two sub-holograms covering different spatial frequency ranges of the object, sharp edges can be extracted successfully. © 2015 OSApostprin

    Nonlinear Development of the Secular Bar-mode Instability in Rotating Neutron Stars

    Get PDF
    We have modelled the nonlinear development of the secular bar-mode instability that is driven by gravitational radiation-reaction (GRR) forces in rotating neutron stars. In the absence of any competing viscous effects, an initially uniformly rotating, axisymmetric n=1/2n=1/2 polytropic star with a ratio of rotational to gravitational potential energy T/W=0.181T/|W| = 0.181 is driven by GRR forces to a bar-like structure, as predicted by linear theory. The pattern frequency of the bar slows to nearly zero, that is, the bar becomes almost stationary as viewed from an inertial frame of reference as GRR removes energy and angular momentum from the star. In this ``Dedekind-like'' state, rotational energy is stored as motion of the fluid in highly noncircular orbits inside the bar. However, in less than 10 dynamical times after its formation, the bar loses its initially coherent structure as the ordered flow inside the bar is disrupted by what appears to be a purely hydrodynamical, short-wavelength, ``shearing'' type instability. The gravitational waveforms generated by such an event are determined, and an estimate of the detectability of these waves is presented.Comment: 25 pages, 9 figures, accepted for publication in ApJ, refereed version, updated, for quicktime movie, see http://www.phys.lsu.edu/~ou/movie/fmode/new/fmode.b181.om4.2e5.mo
    corecore