2,743 research outputs found

    Force Modulating Dynamic Disorder: Physical Theory of Catch-slip bond Transitions in Receptor-Ligand Forced Dissociation Experiments

    Full text link
    Recently experiments showed that some adhesive receptor-ligand complexes increase their lifetimes when they are stretched by mechanical force, while the force increase beyond some thresholds their lifetimes decrease. Several specific chemical kinetic models have been developed to explain the intriguing transitions from the "catch-bonds" to the "slip-bonds". In this work we suggest that the counterintuitive forced dissociation of the complexes is a typical rate process with dynamic disorder. An uniform one-dimension force modulating Agmon-Hopfield model is used to quantitatively describe the transitions observed in the single bond P-selctin glycoprotein ligand 1(PSGL-1)-P-selectin forced dissociation experiments, which were respectively carried out on the constant force [Marshall, {\it et al.}, (2003) Nature {\bf 423}, 190-193] and the force steady- or jump-ramp [Evans {\it et al.}, (2004) Proc. Natl. Acad. Sci. USA {\bf 98}, 11281-11286] modes. Our calculation shows that the novel catch-slip bond transition arises from a competition of the two components of external applied force along the dissociation reaction coordinate and the complex conformational coordinate: the former accelerates the dissociation by lowering the height of the energy barrier between the bound and free states (slip), while the later stabilizes the complex by dragging the system to the higher barrier height (catch).Comment: 8 pages, 3 figures, submitte

    On classical string configurations

    Full text link
    Equations which define classical configurations of strings in R3R^3 are presented in a simple form. General properties as well as particular classes of solutions of these equations are considered.Comment: 10 pages, Latex, no figures, trivial corrections, submitted to Modern Physics Letters

    Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model

    Get PDF
    A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for the speedy calculation of transmittances in clear atmospheres, and a thin cirrus cloud parameterization using a number of observed ice crystal size and shape distributions. Numerical simulations show that cirrus cloudy radiances in the 800–1130-cm^(-1) thermal infrared window are sufficiently sensitive to variations in cirrus optical depth and ice crystal size as well as in ice crystal shape if appropriate habit distribution models are selected a priori for analysis. The parameterization model has been applied to the Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite to interpret clear and thin cirrus spectra observed in the thermal infrared window. Five clear and 29 thin cirrus cases at nighttime over and near the Atmospheric Radiation Measurement program (ARM) tropical western Pacific (TWP) Manus Island and Nauru Island sites have been chosen for this study. A X^2-minimization program was employed to infer the cirrus optical depth and ice crystal size and shape from the observed AIRS spectra. Independent validation shows that the AIRS-inferred cloud parameters are consistent with those determined from collocated ground-based millimeter-wave cloud radar measurements. The coupled thin cirrus radiative transfer parameterization and OPTRAN, if combined with a reliable thin cirrus detection scheme, can be effectively used to enhance the AIRS data volume for data assimilation in numerical weather prediction models

    Primary role of the barely occupied states in the charge density wave formation of NbSe2

    Full text link
    NbSe2 is a prototypical charge-density-wave (CDW) material, whose mechanism remains mysterious so far. With angle resolved photoemission spectroscopy, we mapped out the CDW gap and recovered the long-lost nesting condition over a large broken-honeycomb region in the Brillouin zone, which consists of six saddle band point regions with high density of states (DOS), and large regions away from Fermi surface with negligible DOS at the Fermi energy. We show that the major contributions to the CDW come from these barely occupied states rather than the saddle band points. Our findings not only resolve a long standing puzzle, but also overthrow the conventional wisdom that CDW is dominated by regions with high DOS.Comment: 5 pages, 4 figure

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques

    Theory on quench-induced pattern formation: Application to the isotropic to smectic-A phase transitions

    Full text link
    During catastrophic processes of environmental variations of a thermodynamic system, such as rapid temperature decreasing, many novel and complex patterns often form. To understand such phenomena, a general mechanism is proposed based on the competition between heat transfer and conversion of heat to other energy forms. We apply it to the smectic-A filament growth process during quench-induced isotropic to smectic-A phase transition. Analytical forms for the buckling patterns are derived and we find good agreement with experimental observation [Phys. Rev. {\bf E55} (1997) 1655]. The present work strongly indicates that rapid cooling will lead to structural transitions in the smectic-A filament at the molecular level to optimize heat conversion. The force associated with this pattern formation process is estimated to be in the order of 10110^{-1} piconewton.Comment: 9 pages in RevTex form, with 3 postscript figures. Accepted by PR

    On CP1 and CP2 maps and Weierstrass representations for surfaces immersed into multi-dimensional Euclidean spaces

    Full text link
    An extension of the classic Enneper-Weierstrass representation for conformally parametrised surfaces in multi-dimensional spaces is presented. This is based on low dimensional CP^1 and CP^2 sigma models which allow the study of the constant mean curvature (CMC) surfaces immersed into Euclidean 3- and 8-dimensional spaces, respectively. Relations of Weierstrass type systems to the equations of these sigma models are established. In particular, it is demonstrated that the generalised Weierstrass representation can admit different CMC-surfaces in R^3 which have globally the same Gauss map. A new procedure for constructing CMC-surfaces in R^n is presented and illustrated in some explicit examples.Comment: arxiv version is already officia

    Evolution of the Electronic Structure of 1T-CuxTiSe2

    Full text link
    The electronic structure of a new charge-density-wave/ superconductor system, 1T-CuxTiSe2, has been studied by photoemission spectroscopy. A correlated semiconductor band structure is revealed for the undoped case. With Cu doping, the charge density wave is suppressed by the raising of the chemical potential, while the superconductivity is enhanced by the enhancement of the density of states. Moreover, the strong scattering at high doping might be responsible for the suppression of superconductivity in that regime.Comment: 5 pages, 4 figure

    Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion

    Full text link
    To study the shape formation process of carbon nanotubes, a string equation describing the possible existing shapes of the axis-curve of multishell carbon tubes (MCTs) is obtained in the continuum limit by minimizing the shape energy, that is the difference between the MCT energy and the energy of the carbonaceous mesophase (CM). It is shown that there exists a threshold relation of the outmost and inmost radii, that gives a parameter regime in which a straight MCT will be bent or twisted. Among the deformed shapes, the regular coiled MCTs are shown being one of the solutions of the string equation. In particular,the optimal ratio of pitch pp and radius r0r_0 for such a coil is found to be equal to 2π2\pi , which is in good agreement with recent observation of coil formation in MCTs by Zhang et al.Comment: RevTeX, no figure, 12 pages, to appear in Phys. Rev. Let
    corecore