2,029 research outputs found
Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the position-dependent mass
Exact solutions of Schrodinger equation are obtained for the modified Kratzer
and the corrected Morse potentials with the position-dependent effective mass.
The bound state energy eigenvalues and the corresponding eigenfunctions are
calculated for any angular momentum for target potentials. Various forms of
point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge;
12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass,
Point canonical transformation, Effective mass Schr\"{o}dinger equation.Comment: 9 page
Electronic transport characterization of AlGaN/GaN heterostructures using quantitative mobility spectrum analysis
Cataloged from PDF version of article.Resistivity and Hall effect measurements in nominally undoped Al0.25Ga0.75N/GaN heterostructures grown on sapphire substrate by metal-organic chemical vapor deposition are carried out as a function of temperature (20-350 K) and magnetic field (0-1.5 T). The measurement results are analyzed using the quantitative mobility spectrum analysis techniques. It is found that there is strong two-dimensional electron gas localization below 100 K, while the thermally activated minority carriers with the activation energies of similar to 58 and similar to 218 meV contribute to the electron transport at high temperatures. (C) 2007 American Institute of Physics
Determination of two-dimensional electron and hole gas carriers in AlGaN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition
Cataloged from PDF version of article.Resistivity and Hall effect measurements on nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrates prepared by metal organic chemical vapor deposition have been carried out as a function of temperature (20-300 K) and magnetic field (0-1.4 T). Variable magnetic field Hall data have been analyzed using the improved quantitative mobility spectrum analysis technique. The mobility and density of the two-dimensional electron gas at the AlGaN/GaN interface and the two-dimensional hole gas at the GaN/AIN interface are separated by quantitative mobility spectrum analysis. The analysis shows that two-channel conduction is present in nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrate. (c) 2007 Elsevier B.V All rights reserved
Early postzygotic mutations contribute to de novo variation in a healthy monozygotic twin pair
Cataloged from PDF version of article.Background: Human de novo single-nucleotide variation (SNV) rate is estimated to range between 0.82-1.70×10-8 mutations per base per generation. However, contribution of early postzygotic mutations to the overall human de novo SNV rate is unknown. Methods: We performed deep whole-genome sequencing (more than 30-fold coverage per individual) of the whole-blood-derived DNA samples of a healthy monozygotic twin pair and their parents. We examined the genotypes of each individual simultaneously for each of the SNVs and discovered de novo SNVs regarding the timing of mutagenesis. Putative de novo SNVs were validated using Sanger-based capillary sequencing. Results: We conservatively characterised 23 de novo SNVs shared by the twin pair, 8 de novo SNVs specific to twin I and 1 de novo SNV specific to twin II. Based on the number of de novo SNVs validated by Sanger sequencing and the number of callable bases of each twin, we calculated the overall de novo SNV rate of 1.31×10-8 and 1.01×10-8 for twin I and twin II, respectively. Of these, rates of the early postzygotic de novo SNVs were estimated to be 0.34×10-8 for twin I and 0.04×10-8 for twin II. Conclusions: Early postzygotic mutations constitute a substantial proportion of de novo mutations in humans. Therefore, genome mosaicism resulting from early mitotic events during embryogenesis is common and could substantially contribute to the development of diseases
Double subband occupation of the two-dimensional electron gas in InxAl1− xN/AlN/ GaN/AlN heterostructures with a low indium content (0.064≤x≤0.140) barrier
Cataloged from PDF version of article.We present a carrier transport study on low indium content (0.064≤x≤0.140) InxAl1−xN/AlN/GaN/AlN
heterostructures. Experimental Hall data were carried out as a function of temperature (33–300 K) and a
magnetic field (0–1.4 T). A two-dimensional electron gas (2DEG) with single or double subbands and a twodimensional
hole gas were extracted after implementing quantitative mobility spectrum analysis on the
magnetic field dependent Hall data. The mobility of the lowest subband of 2DEG was found to be lower than
the mobility of the second subband. This behavior is explained by way of interface related scattering
mechanisms, and the results are supported with a one-dimensional self-consistent solution of non-linear
Schrödinger–Poisson equations
Microstructural defect properties of InGaN/GaN blue light emitting diode structures
Cataloged from PDF version of article.In this paper, we study structural and morphological properties of metal-organic chemical vapour deposition-grown InGaN/GaN light emitting diode (LED) structures with different indium (In) content by means of high-resolution X-ray diffraction, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and current-voltage characteristic (I-V). We have found out that the tilt and twist angles, lateral and vertical coherence lengths of mosaic blocks, grain size, screw and edge dislocation densities of GaN and InGaN layers, and surface roughness monotonically vary with In content. Mosaic defects obtained due to temperature using reciprocal lattice space map has revealed optimized growth temperature for active InGaN layer of MQW LED. It has been observed in this growth temperature that according to AFM result, LED structure has high crystal dimension, and is rough whereas according to PL and FTIR results, bandgap energy shifted to blue, and energy peak half-width decreased at high values. According to I-V measurements, it was observed that LED reacted against light at optimized temperature. In conclusion, we have seen that InGaN MQW structure's structural, optical and electrical results supported one another
Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)
Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out. A Osorio1, R L Milne2, G Pita3, P Peterlongo4,5, T Heikkinen6, J Simard7, G Chenevix-Trench8, A B Spurdle8, J Beesley8, X Chen8, S Healey8, KConFab9, S L Neuhausen10, Y C Ding10, F J Couch11,12, X Wang11, N Lindor13, S Manoukian4, M Barile14, A Viel15, L Tizzoni5,16, C I Szabo17, L Foretova18, M Zikan19, K Claes20, M H Greene21, P Mai21, G Rennert22, F Lejbkowicz22, O Barnett-Griness22, I L Andrulis23,24, H Ozcelik24, N Weerasooriya23, OCGN23, A-M Gerdes25, M Thomassen25, D G Cruger26, M A Caligo27, E Friedman28,29, B Kaufman28,29, Y Laitman28, S Cohen28, T Kontorovich28, R Gershoni-Baruch30, E Dagan31,32, H Jernström33, M S Askmalm34, B Arver35, B Malmer36, SWE-BRCA37, S M Domchek38, K L Nathanson38, J Brunet39, T Ramón y Cajal40, D Yannoukakos41, U Hamann42, HEBON37, F B L Hogervorst43, S Verhoef43, EB Gómez García44,45, J T Wijnen46,47, A van den Ouweland48, EMBRACE37, D F Easton49, S Peock49, M Cook49, C T Oliver49, D Frost49, C Luccarini50, D G Evans51, F Lalloo51, R Eeles52, G Pichert53, J Cook54, S Hodgson55, P J Morrison56, F Douglas57, A K Godwin58, GEMO59,60,61, O M Sinilnikova59,60, L Barjhoux59,60, D Stoppa-Lyonnet61, V Moncoutier61, S Giraud59, C Cassini62,63, L Olivier-Faivre62,63, F Révillion64, J-P Peyrat64, D Muller65, J-P Fricker65, H T Lynch66, E M John67, S Buys68, M Daly69, J L Hopper70, M B Terry71, A Miron72, Y Yassin72, D Goldgar73, Breast Cancer Family Registry37, C F Singer74, D Gschwantler-Kaulich74, G Pfeiler74, A-C Spiess74, Thomas v O Hansen75, O T Johannsson76, T Kirchhoff77, K Offit77, K Kosarin77, M Piedmonte78, G C Rodriguez79, K Wakeley80, J F Boggess81, J Basil82, P E Schwartz83, S V Blank84, A E Toland85, M Montagna86, C Casella87, E N Imyanitov88, A Allavena89, R K Schmutzler90, B Versmold90, C Engel91, A Meindl92, N Ditsch93, N Arnold94, D Niederacher95, H Deißler96, B Fiebig97, R Varon-Mateeva98, D Schaefer99, U G Froster100, T Caldes101, M de la Hoya101, L McGuffog49, A C Antoniou49, H Nevanlinna6, P Radice4,5 and J Benítez1,3 on behalf of CIMB
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
- …
