31,314 research outputs found
3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components
Conversion of glassy antiferromagnetic-insulating phase to equilibrium ferromagnetic-metallic phase by devitrification and recrystallization in Al substituted PrCaMnO
We show that PrCaMnO with 2.5% Al substitution and
LaCaMnO (LCMO) exhibit qualitatively similar and
visibly anomalous M-H curves at low temperature. Magnetic field causes a broad
first-order but irreversible antiferromagnetic (AF)-insulating (I) to
ferromagnetic (FM)-metallic (M) transition in both and gives rise to soft FM
state. However, the low temperature equilibrium state of
PrCaMnAlO (PCMAO) is FM-M whereas that
of LCMO is AF-I. In both the systems the respective equilibrium phase coexists
with the other phase with contrasting order, which is not in equilibrium, and
the cooling field can tune the fractions of the coexisting phases. It is shown
earlier that the coexisting FM-M phase behaves like `magnetic glass' in LCMO.
Here we show from specially designed measurement protocols that the AF-I phase
of PCMAO has all the characteristics of magnetic glassy states. It devitrifies
on heating and also recrystallizes to equilibrium FM-M phase after annealing.
This glass-like AF-I phase also shows similar intriguing feature observed in
FM-M magnetic glassy state of LCMO that when the starting coexisting fraction
of glass is larger, successive annealing results in larger fraction of
equilibrium phase. This similarity between two manganite systems with
contrasting magnetic orders of respective glassy and equilibrium phases points
toward a possible universality.Comment: Highlights potential of CHUF (Cooling and Heating in Unequal Fields),
a new measurement protoco
Self dual models and mass generation in planar field theory
We analyse in three space-time dimensions, the connection between abelian
self dual vector doublets and their counterparts containing both an explicit
mass and a topological mass. Their correspondence is established in the
lagrangian formalism using an operator approach as well as a path integral
approach. A canonical hamiltonian analysis is presented, which also shows the
equivalence with the lagrangian formalism. The implications of our results for
bosonisation in three dimensions are discussed.Comment: 15 pages,Revtex, No figures; several changes; revised version to
appear in Physical Review
Time dependent spectral modeling of Markarian 421 during a violent outburst in 2010
We present the results of extensive modeling of the spectral energy
distributions (SEDs) of the closest blazar (z=0.031) Markarian 421 (Mrk 421)
during a giant outburst in February 2010. The source underwent rapid flux
variations in both X-rays and very high energy (VHE) gamma-rays as it evolved
from a low-flux state on 2010 February 13-15 to a high-flux state on 2010
February 17. During this period, the source exhibited significant spectral
hardening from X-rays to VHE gamma-rays while exhibiting a "harder when
brighter" behavior in these energy bands. We reproduce the broadband SED using
a time-dependent multi-zone leptonic jet model with radiation feedback. We find
that an injection of the leptonic particle population with a single power-law
energy distribution at shock fronts followed by energy losses in an
inhomogeneous emission region is suitable for explaining the evolution of Mrk
421 from low- to high-flux state in February 2010. The spectral states are
successfully reproduced by a combination of a few key physical parameters, such
as the maximum minimum cutoffs and power-law slope of the electron
injection energies, magnetic field strength, and bulk Lorentz factor of the
emission region. The simulated light curves and spectral evolution of Mrk 421
during this period imply an almost linear correlation between X-ray flux at
1-10 keV energies and VHE gamma-ray flux above 200 GeV, as has been previously
exhibited by this source. Through this study, a general trend that has emerged
for the role of physical parameters is that, as the flare evolves from a low-
to a high-flux state, higher bulk kinetic energy is injected into the system
with a harder particle population and a lower magnetic field strength.Comment: 13 pages, 5 figures, accepted for publication in MNRA
3-D inelastic analysis methods for hot section components (base program)
A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described
Design and test of a magnetic thrust bearing
A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented
Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes
We show, using the tunneling method, that Lovelock black holes Hawking
radiate with a perfect blackbody spectrum. This is a new result. Within the
semiclassical (WKB) approximation the temperature of the spectrum is given by
the semiclassical Hawking temperature. Beyond the semiclassical approximation
the thermal nature of the spectrum does not change but the temperature
undergoes some higher order corrections. This is true for both black hole
(event) and cosmological horizons. Using the first law of thermodynamics the
black hole entropy is calculated. Specifically the -dimensional static,
chargeless black hole solutions which are spherically symmetric and
asymptotically flat, AdS or dS are considered. The interesting property of
these black holes is that their semiclassical entropy does not obey the
Bekenstein-Hawking area law. It is found that the leading correction to the
semiclassical entropy for these black holes is not logarithmic and next to
leading correction is also not inverse of horizon area. This is in contrast to
the black holes in Einstein gravity. The modified result is due to the presence
of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the
coupling constant of the Gauss-Bonnet term vanishes one recovers the known
correctional terms as expected in Einstein gravity. Finally we relate the
coefficient of the leading (non-logarithmic) correction with the trace anomaly
of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34
pages, no figures, to appear in JHE
Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1
A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980
- …
