6,309 research outputs found
Use of glide-ins in CMS for production and analysis
With the evolution of various grid federations, the Condor glide-ins represent a key feature in providing a homogeneous pool of resources using late-binding technology. The CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve the Master-Worker relationships, with the worker first validating the execution environment on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The combination of late-binding and validation significantly reduces the overall failure rate visible to CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge, CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features essential to the success of large-scale production and analysis on CMS resources across major grid federations, including EGEE, OSG and NorduGrid are outlined. Use of glide-ins via the CRAB server mechanism and ProdAgent, as well as first hand experience of using the next generation CREAM computing element within the CMS framework is discussed
Sediment and carbon accumulation in sub-tropical salt marsh and mangrove habitats of north-eastern coast of Bay of Bengal, Indian Ocean
Researches on salt marsh mangrove habitats as global carbon sink are increasing worldwide. However, uncertainties in measuring carbon sequestration capacity of the vulnerable
subtropical South Asian coastal habitat thus obstructing the mapping sediment and carbon accumulation rate of their importance.The present investigation was carried out to assess the sedimentation and carbon accumulation rate in salt marsh and mangrove habitats in the vicinity of Sitakunda coast, Chittagong, Bangladesh. The data indicate that sedimentation rate was 22.76±2.56 mg/cm2/day in mangrove area, 63.52±7.42 mg/cm2/day in lower mangrove area, 97.02±6.64 mg/cm2/day in higher marsh area, 5.91±1.16 mg/cm
2/day in lower marsh area and 9.81±0.03 mg/cm2/day in muddy area. The average sedimentation rate was found 39.82±6.72 mg/cm2/day during the study period. Soil organic matter in the newly deposited sediment was 3.89±1.28%, while 3.57±0.77% in accumulated peat sediment.Organic carbon of the newly deposited sediment was 2.05±0.93% and 1.89±0.55% in accumulated peat sediment. Usually, the organic materials
were found higher in the peat soil in the wetland habitat, while lower amount of organic materials are found in the present peat soil. Lower amount of organic materials in peat soil in the study area could probably due to higher utilization of organic materials by aquatic plants. Further, uncertainties remain about sediment and carbon accumulation changes with tidal range, latitude and elevation in study area require long-term spatio-temporal investigation
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
Using a novel electrochemical phase-field model, we question the common
belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases
during battery discharge. For small currents, spinodal decomposition or
nucleation leads to moving phase boundaries. Above a critical current density
(in the Tafel regime), the spinodal disappears, and particles fill
homogeneously, which may explain the superior rate capability and long cycle
life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure
New Particles Working Group Report of the Snowmass 2013 Community Summer Study
This report summarizes the work of the Energy Frontier New Physics working
group of the 2013 Community Summer Study (Snowmass)
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
Size-dependent spinodal and miscibility gaps for intercalation in nano-particles
Using a recently-proposed mathematical model for intercalation dynamics in
phase-separating materials [Singh, Ceder, Bazant, Electrochimica Acta 53, 7599
(2008)], we show that the spinodal and miscibility gaps generally shrink as the
host particle size decreases to the nano-scale. Our work is motivated by recent
experiments on the high-rate Li-ion battery material LiFePO4; this serves as
the basis for our examples, but our analysis and conclusions apply to any
intercalation material. We describe two general mechanisms for the suppression
of phase separation in nano-particles: (i) a classical bulk effect, predicted
by the Cahn-Hilliard equation, in which the diffuse phase boundary becomes
confined by the particle geometry; and (ii) a novel surface effect, predicted
by chemical-potential-dependent reaction kinetics, in which
insertion/extraction reactions stabilize composition gradients near surfaces in
equilibrium with the local environment. Composition-dependent surface energy
and (especially) elastic strain can contribute to these effects but are not
required to predict decreased spinodal and miscibility gaps at the nano-scale
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
- …
