602 research outputs found
Zipf's law in Nuclear Multifragmentation and Percolation Theory
We investigate the average sizes of the largest fragments in nuclear
multifragmentation events near the critical point of the nuclear matter phase
diagram. We perform analytic calculations employing Poisson statistics as well
as Monte Carlo simulations of the percolation type. We find that previous
claims of manifestations of Zipf's Law in the rank-ordered fragment size
distributions are not born out in our result, neither in finite nor infinite
systems. Instead, we find that Zipf-Mandelbrot distributions are needed to
describe the results, and we show how one can derive them in the infinite size
limit. However, we agree with previous authors that the investigation of
rank-ordered fragment size distributions is an alternative way to look for the
critical point in the nuclear matter diagram.Comment: 8 pages, 11 figures, submitted to PR
Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory
We present photometric and spectroscopic observations of galaxies hosting
Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory
(SNfactory). Combining GALEX UV data with optical and near infrared photometry,
we employ stellar population synthesis techniques to measure SN Ia host galaxy
stellar masses, star-formation rates (SFRs), and reddening due to dust. We
reinforce the key role of GALEX UV data in deriving accurate estimates of
galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are
fitted simultaneously for their stellar continua and emission lines fluxes,
from which we derive high precision redshifts, gas-phase metallicities, and
Halpha-based SFRs. With these data we show that SN Ia host galaxies present
tight agreement with the fiducial galaxy mass-metallicity relation from SDSS
for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The
star-formation activity of SN Ia host galaxies is consistent with a sample of
comparable SDSS field galaxies, though this comparison is limited by systematic
uncertainties in SFR measurements. Our analysis indicates that SN Ia host
galaxies are, on average, typical representatives of normal field galaxies.Comment: 25 pages, 13 figures, accepted for publication in Ap
Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory
Context. Our Local Group of galaxies appears to be moving relative to the
cosmic microwave background with the source of the peculiar motion still
uncertain. While in the past this has been studied mostly using galaxies as
distance indicators, the weight of type Ia supernovae (SNe Ia) has increased
recently with the continuously improving statistics of available low-redshift
supernovae.
Aims. We measured the bulk flow in the nearby universe ()
using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the
Union2 compilation of SN Ia data already in the literature.
Methods. The bulk flow velocity was determined from SN data binned in
redshift shells by including a coherent motion (dipole) in a cosmological fit.
Additionally, a method of spatially smoothing the Hubble residuals was used to
verify the results of the dipole fit. To constrain the location and mass of a
potential mass concentration (e.g., the Shapley supercluster) responsible for
the peculiar motion, we fit a Hubble law modified by adding an additional mass
concentration.
Results. The analysis shows a bulk flow that is consistent with the direction
of the CMB dipole up to , thereby doubling the volume over which
conventional distance measures are sensitive to a bulk flow. We see no
significant turnover behind the center of the Shapley supercluster. A simple
attractor model in the proximity of the Shapley supercluster is only marginally
consistent with our data, suggesting the need for another, more distant source.
In the redshift shell , we constrain the bulk flow velocity to
(68% confidence level) for the direction of the CMB
dipole, in contradiction to recent claims of the existence of a large-amplitude
dark flow.Comment: 12 pages, 5 figures, added corrigendum
(http://adsabs.harvard.edu/abs/2015A%26A...578C...1F
Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory
We examine the relationship between Type Ia Supernova (SN Ia) Hubble
residuals and the properties of their host galaxies using a sample of 115 SNe
Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar
masses and specific star-formation rates fitted from photometry for all hosts,
as well as gas-phase metallicities for a subset of 69 star-forming (non-AGN)
hosts, to show that the SN Ia Hubble residuals correlate with each of these
host properties. With these data we find new evidence for a correlation between
SN Ia intrinsic color and host metallicity. When we combine our data with those
of other published SN Ia surveys, we find the difference between mean SN Ia
brightnesses in low and high mass hosts is 0.077 +- 0.014 mag. When viewed in
narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus
of Hubble residuals at high and low host masses with a rapid transition over a
short mass range (9.8 <= log(M_*/M_Sun) <= 10.4). Although metallicity has been
a favored interpretation for the origin of the Hubble residual trend with host
mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor
age both evolve along the galaxy mass sequence, thereby presenting equally
viable explanations for some or all of the observed SN Ia host bias.Comment: 20 pages, 11 figures, accepted for publication in Ap
Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression
We present a novel class of models for Type Ia supernova time-evolving
spectral energy distributions (SED) and absolute magnitudes: they are each
modeled as stochastic functions described by Gaussian processes. The values of
the SED and absolute magnitudes are defined through well-defined regression
prescriptions, so that data directly inform the models. As a proof of concept,
we implement a model for synthetic photometry built from the spectrophotometric
time series from the Nearby Supernova Factory. Absolute magnitudes at peak
brightness are calibrated to 0.13 mag in the -band and to as low as 0.09 mag
in the blueshifted -band, where the dispersion includes
contributions from measurement uncertainties and peculiar velocities. The
methodology can be applied to spectrophotometric time series of supernovae that
span a range of redshifts to simultaneously standardize supernovae together
with fitting cosmological parameters.Comment: 47 pages, 15 figures, accepted for publication by Astrophysical
Journa
Keck Observations of the Young Metal-Poor Host Galaxy of the Super-Chandrasekhar-Mass Type Ia Supernova SN 2007if
We present Keck LRIS spectroscopy and -band photometry of the metal-poor,
low-luminosity host galaxy of the super-Chandrasekhar mass Type Ia supernova SN
2007if. Deep imaging of the host reveals its apparent magnitude to be
, which at the spectroscopically-measured redshift of
corresponds to an absolute magnitude of
. Galaxy color constrains the mass-to-light ratio,
giving a host stellar mass estimate of . Balmer
absorption in the stellar continuum, along with the strength of the 4000\AA\
break, constrain the age of the dominant starburst in the galaxy to be
Myr, corresponding to a main-sequence
turn-off mass of . Using the R method of
calculating metallicity from the fluxes of strong emission lines, we determine
the host oxygen abundance to be ,
significantly lower than any previously reported spectroscopically-measured
Type Ia supernova host galaxy metallicity. Our data show that SN 2007if is very
likely to have originated from a young, metal-poor progenitor.Comment: 15 pages, 9 figures; accepted for publication in Ap
Searching for Invariants Using Temporal Resolution
In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described
Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter
The equation of state of hadron resonance gas at finite temperature and
baryon density is calculated taking into account finite-size effects within the
excluded volume model. Contributions of known hadrons with masses up to 2 GeV
are included in the zero-width approximation. Special attention is paid to the
role of strange hadrons in the system with zero total strangeness. A density-
dependent mean field is added to guarantee that the nuclear matter has a
saturation point and a liquid-gas phase transition. The deconfined phase is
described by the bag model with lowest order perturbative corrections. The
phase transition boundary is found by using the Gibbs conditions with the
strangeness neutrality constraint. The sensitivity of the phase diagram to the
hadronic excluded volume and to the parametrization of the mean-field is
investigated. The possibility of strangeness-antistrangeness separation in the
mixed phase is analyzed. It is demonstrated that the peaks in the kaon to pion
and lambda to pion multiplicity ratios can be explained by a nonmonotonous
behavior of the strangeness fugacity along the chemical freeze-out line.Comment: 40 pages, 31 figure
Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol
© 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor
From QFT to DCC
A quantum field theoretical model for the dynamics of the disoriented chiral
condensate is presented. A unified approach to relate the quantum field theory
directly to the formation, decay and signals of the DCC and its evolution is
taken. We use a background field analysis of the O(4) sigma model keeping
one-loop quantum corrections (quadratic order in the fluctuations). An
evolution of the quantum fluctuations in an external, expanding metric which
simulates the expansion of the plasma, is carried out. We examine, in detail,
the amplification of the low momentum pion modes with two competing effects,
the expansion rate of the plasma and the transition rate of the vacuum
configuration from a metastable state into a stable state.We show the effect of
DCC formation on the multiplicity distributions and the Bose-Einstein
correlations.Comment: 34 pages, 10 figure
- …
