883 research outputs found

    Properties of galaxy halos in Clusters and Voids

    Get PDF
    We use the results of a high resolution N-body simulation to investigate the role of the environment on the formation and evolution of galaxy-sized halos. Starting from a set of constrained initial conditions, we have produced a final configuration hosting a double cluster in one octant and a large void extending over two octants of the simulation box. We present results for two statistics: the relationship between 1-D velocity dispersion and mass and the probability distribution of the spin parameter P(λ)P(\lambda). The \svm relationship is well reproduced by the Truncated Isothermal Sphere (TIS) model introduced by Shapiro et al. (1999), although the slope is different from the original prediction. A series of \svm relationships for different values of the anisotropy parameter β\beta, obtained using the theoretical predictions by Lokas and Mamon (2001) for NFW density profiles are found to be only marginally consistent with the data. Using some properties of the equilibrium TIS models, we construct subsamples of {\em fiducial} equilibrium TIS halos from each of the three subregions, and we study their properties. For these halos, we do find an environmental dependence of their properties, in particular of the spin parameter distribution P(λ)P(\lambda). We study in more detail the TIS model, and we find new relationships between the truncation radius and other structural parameters. No gravitationally bound halo is found having a radius larger than the critical value for gravithermal instability for TIS halos (\rt 34.2r0\ge 34.2 r_{0}, where r0r_{0} is the core radius of the TIS solution). We do however find a dependence of this relationship on the environment, like for the P(λ)P(\lambda) statistics. These facts hint at a possible r\^{o}le of tidal fields at determining the statistical properties of halos.Comment: 12 pages, 14 figures. Accepted by MNRAS. Adopted an improved algorithm for halo finding and added a comparison with NFW model

    Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition

    Get PDF
    The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024- T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk

    Hormone Therapy Reduces Bone Resorption but not Bone Formation in Postmenopausal Athletes

    Get PDF
    INTRODUCTION: Independently, hormone therapy and exercise have well-established protective effects on bone parameters. The combined effects of hormone therapy and exercise, however, are less clear. We, therefore, examined the effects of hormone therapy on bone turnover markers in postmenopausal women undergoing regular high intensity exercise. METHODS: In a randomised, double blind study, postmenopausal athletes competing at Masters level, received either hormone therapy (50 μg transdermal oestradiol, 5 mg MPA, n = 8) or placebo (n = 7) for 20 weeks. Women were tested before and after treatment for plasma concentrations of oestradiol, FSH, LH, and serum bone formation marker -osteocalcin (OC); and urine bone resorption markers-pyridinoline (PYD) and deoxypyridinoline (DPD). RESULTS: As a result of treatment with hormone therapy there were significant reductions in levels of FSH (73.3 ± 13.7 to 48.6 ± 10.5 mmol/L, p = 0.01) and bone resorption markers (PYD, 81.9 ± 7.7 to 57.8 ± 3.7 nmol/mmol Cr, p = 0.001, and DPD, 18.5 ± 3.1 to 11.8 ± 2.1 nmol/mmol Cr, p = 0.01). Oestradiol and bone formation markers were not significantly altered as a result of hormone therapy. There were no changes to any variables with placebo treatment. CONCLUSION: Hormone therapy reduced bone resorption, but not bone formation, in postmenopausal athletes. These favorable reductions in bone turnover; therefore, provide an effective treatment in combination with high intensity exercise to further reduce the subsequent risk of osteoporosis and associated fractures

    Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

    Get PDF
    We report the observation of a very high energy \gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ, and possible counterparts at other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap

    Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

    Get PDF
    The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments

    Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

    Get PDF
    We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) gamma-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure

    Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

    Get PDF
    In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index alpha = -2.1 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.Comment: Accepted for publication on ApJ

    Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

    Get PDF
    Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2^2), is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays shadowing effect due to: (1) good angular resolution, pointing accuracy and long-term stability; (2) low energy threshold; (3) real sensitivity to the geomagnetic field. Based on all the data recorded during the period from July 2006 through November 2009 and on a full Monte Carlo simulation, we searched for the existence of the shadow cast by antiprotons in the TeV energy region. No evidence of the existence of antiprotons is found in this energy region. Upper limits to the pˉ/p\bar{p}/p flux ratio are set to 5 % at a median energy of 1.4 TeV and 6 % at 5 TeV with a confidence level of 90%. In the TeV energy range these limits are the lowest available.Comment: Contact authors: G. Di Sciascio ([email protected]) and R. Iuppa ([email protected]), INFN Sezione di Roma Tor Vergata, Roma, Ital

    Catalysis in flow: Operando study of Pd catalyst speciation and leaching

    Get PDF
    A custom-made plug flow reactor was designed and constructed to examine the behaviour of Pd catalysts during Suzuki-Miyaura cross-coupling reactions. Spatial-temporal resolution of catalyst activation, deactivation and leaching processes can be obtained by single-pass experiments. Subsequent deployment of the flow reactor in a XAS beam line revealed speciation of Pd along the catalyst bed
    corecore