7,847 research outputs found
Skyrme crystal or Skyrme liquid?
We address the quantum melting phase transition of the Skyrme crystal. Based
on generic sum rules for two-dimensional, isotropic electron quantum liquids in
the lowest Landau level, we propose analytic expressions for the pair
distribution functions of spin-polarized and spin-unpolarized liquid phases at
filling factors . From the pair distribution functions we
calculate the energy of such liquid phases and compare with the energy of the
solid phase. The comparison suggests that the quantum melting phase transition
may lie much closer to than ever expected.Comment: 4 pages, submitted to Phys. Rev. Lett. The main conclusion remains
the same, but relevant conceptual changes have been mad
Temperature dependent magnetization dynamics of magnetic nanoparticles
Recent experimental and theoretical studies show that the switching behavior
of magnetic nanoparticles can be well controlled by external time-dependent
magnetic fields. In this work, we inspect theoretically the influence of the
temperature and the magnetic anisotropy on the spin-dynamics and the switching
properties of single domain magnetic nanoparticles (Stoner-particles). Our
theoretical tools are the Landau-Lifshitz-Gilbert equation extended as to deal
with finite temperatures within a Langevine framework. Physical quantities of
interest are the minimum field amplitudes required for switching and the
corresponding reversal times of the nanoparticle's magnetic moment. In
particular, we contrast the cases of static and time-dependent external fields
and analyze the influence of damping for a uniaxial and a cubic anisotropy.Comment: accepted by Journal of Physics: Condensed Matte
Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories
Phylodynamics is an area of population genetics that uses genetic sequence
data to estimate past population dynamics. Modern state-of-the-art Bayesian
nonparametric methods for recovering population size trajectories of unknown
form use either change-point models or Gaussian process priors. Change-point
models suffer from computational issues when the number of change-points is
unknown and needs to be estimated. Gaussian process-based methods lack local
adaptivity and cannot accurately recover trajectories that exhibit features
such as abrupt changes in trend or varying levels of smoothness. We propose a
novel, locally-adaptive approach to Bayesian nonparametric phylodynamic
inference that has the flexibility to accommodate a large class of functional
behaviors. Local adaptivity results from modeling the log-transformed effective
population size a priori as a horseshoe Markov random field, a recently
proposed statistical model that blends together the best properties of the
change-point and Gaussian process modeling paradigms. We use simulated data to
assess model performance, and find that our proposed method results in reduced
bias and increased precision when compared to contemporary methods. We also use
our models to reconstruct past changes in genetic diversity of human hepatitis
C virus in Egypt and to estimate population size changes of ancient and modern
steppe bison. These analyses show that our new method captures features of the
population size trajectories that were missed by the state-of-the-art methods.Comment: 36 pages, including supplementary informatio
Site effect determination using seismic noise from Tungurahua volcano (Ecuador):implications for seismo-acoustic analysis
Deterministic chaos in an ytterbium-doped mode-locked fiber laser
We experimentally study the nonlinear dynamics of a femtosecond ytterbium
doped mode-locked fiber laser. With the laser operating in the pulsed regime a
route to chaos is presented, starting from stable mode-locking, period two,
period four, chaos and period three regimes. Return maps and bifurcation
diagrams were extracted from time series for each regime. The analysis of the
time series with the laser operating in the quasi mode-locked regime presents
deterministic chaos described by an unidimensional Rossler map. A positive
Lyapunov exponent confirms the deterministic chaos of the
system. We suggest an explanation about the observed map by relating gain
saturation and intra-cavity loss
Mocarts: a lightweight radiation transport simulator for easy handling of complex sensing geometries
In functional neuroimaging (fNIRS), elaborated sensing geometries pairing multiple light sources and detectors arranged over the tissue surface are needed. A variety of software tools for probing forward models of radiation transport in tissue exist, but their handling of sensing geometries and specification of complex tissue architectures is, most times, cumbersome. In this work, we introduce a lightweight simulator, Monte Carlo Radiation Transport Simulator (MOCARTS) that attends these demands for simplifying specification of tissue architectures and complex sensing geometries. An object-oriented architecture facilitates such goal. The simulator core is evolved from the Monte Carlo Multi-Layer (mcml) tool but extended to support multi-channel simulations. Verification against mcml yields negligible error (RMSE~4-10e-9) over a photon trajectory. Full simulations show concurrent validity of the proposed tool. Finally, the ability of the new software to simulate multi-channel sensing geometries and to define biological tissue models in an intuitive nested-hierarchy way are exemplified
Vortex structure of thin mesoscopic disks in the presence of an inhomogeneous magnetic field
The vortex states in a thin mesoscopic disk are investigated within the
phenomenological Ginzburg-Landau theory in the presence of different ''model''
magnetic field profiles with zero average field which may result from a
ferromagnetic disk or circulating currents in a loop near the superconductor.
We calculated the dependences of both the ground and metastable states on the
magnitude and shape of the magnetic field profile for different values of the
order parameter angular moment, i.e. the vorticity. The regions of existence of
the multi-vortex state and the giant vortex state are found. We analysed the
phase transitions between these states and studied the contribution from
ring-shaped vortices. A new transition between different multi-vortex
configurations as the ground state is found. Furthermore, we found a vortex
state consisting of a central giant vortex surrounded by a collection of
anti-vortices which are located in a ring around this giant vortex. The limit
to a disk with an infinite radius, i.e. a film, will also be discussed. We also
extended our results to ''real'' magnetic field profiles and to the case in
which an external homogeneous magnetic field is present.Comment: 17 pages, 23 figures. Submitted to PR
- …
