688 research outputs found

    Past and present potential distribution of the Iberian Abies species: A phytogeographic approach using pollen data and species distribution models

    Get PDF
    This is the accepted version of the following article: Alba-Sánchez, F., López-Sáez, J. A., Pando, B. B.-d., Linares, J. C., Nieto-Lugilde, D. and López-Merino, L. (2010), Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Diversity and Distributions, 16: 214–228, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/j.1472-4642.2010.00636.x/abstract.Aim - Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location - The Iberian Peninsula. Methods - For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian-wide fossil pollen records to detect areas of overlap. Results - The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well-differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present-day, Mid-Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions - Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological-niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies.The Andalusian Innovation, Science, and Industry Regional Ministry and the National Plan of the Spanish Government

    Experiments on Lunar Core Composition: Phase Equilibrium Analysis of A Multi-Element (Fe-Ni-S-C) System

    Get PDF
    Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions

    Global monopole, dark matter and scalar tensor theory

    Get PDF
    In this article, we discuss the space-time of a global monopole field as a candidate for galactic dark matter in the context of scalar tensor theory.Comment: 8 pages, Accepted in Mod. Phys. Lett.

    A Kolmogorov-Zakharov Spectrum in AdSAdS Gravitational Collapse

    Full text link
    We study black hole formation during the gravitational collapse of a massless scalar field in asymptotically AdSDAdS_D spacetimes for D=4,5D=4,5. We conclude that spherically symmetric gravitational collapse in asymptotically AdSAdS spaces is turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find that after an initial period of weakly nonlinear evolution, there is a regime where the power spectrum of the Ricci scalar evolves as ωs\omega^{-s} with the frequency, ω\omega, and s1.7±0.1s\approx 1.7\pm 0.1.Comment: 5 pages, 4 figures. v2: Typos, other initial profile considered for universality, error analysis, close to PRL versio

    A General Mechanism for Network-Dosage Compensation in Gene Circuits

    Get PDF
    Coping with variations in network dosage is crucial for maintaining optimal function in gene networks. We explored how network structure facilitates network-level dosage compensation. By using the yeast galactose network as a model, we combinatorially deleted one of the two copies of its four regulatory genes and found that network activity was robust to the change in network dosage. A mathematical analysis revealed that a two-component genetic circuit with elements of opposite regulatory activity (activator and inhibitor) constitutes a minimal requirement for network-dosage invariance. Specific interaction topologies and a one-to-one interaction stoichiometry between the activating and inhibiting agents were additional essential elements facilitating dosage invariance. This mechanism of network-dosage invariance could represent a general design for gene network structure in cells

    Non-Gaussian Features of Transmitted Flux of QSO's Lyα\alpha Absorption: Intermittent Exponent

    Full text link
    We calculate the structure function and intermittent exponent of the 1.) Keck data, which consists of 29 high resolution, high signal to noise ratio (S/N) QSO Lyα\alpha absorption spectra, and 2.)the Lyα\alpha forest simulation samples produced via the pseudo hydro scheme for the low density cold dark matter (LCDM) model and warm dark matter (WDM) model with particle mass mW=300,600,800m_W=300, 600, 800 and 1000 eV. These two measures detect not only non-gaussianities, but also the type of non-gaussianty in the the field. We find that, 1.) the structure functions of the simulation samples are significantly larger than that of Keck data on scales less than about 100 h1^{-1} kpc, 2.) the intermittent exponent of the simulation samples is more negative than that of Keck data on all redshifts considered, 3.) the order-dependence of the structure functions of simulation samples are closer to the intermittency of hierarchical clustering on all scales, while the Keck data are closer to a lognormal field on small scales. These differences are independent of noise and show that the intermittent evolution modeled by the pseudo-hydro simulation is substantially different from observations, even though they are in good agreement in terms of second and lower order statistics. (Abridged)Comment: 17 pages, 13 figures. Accepted by Ap

    Quasi-local evolution of cosmic gravitational clustering in the weakly non-linear regime

    Full text link
    We investigate the weakly non-linear evolution of cosmic gravitational clustering in phase space by looking at the Zel'dovich solution in the discrete wavelet transform (DWT) representation. We show that if the initial perturbations are Gaussian, the relation between the evolved DWT mode and the initial perturbations in the weakly non-linear regime is quasi-local. That is, the evolved density perturbations are mainly determined by the initial perturbations localized in the same spatial range. Furthermore, we show that the evolved mode is monotonically related to the initial perturbed mode. Thus large (small) perturbed modes statistically correspond to the large (small) initial perturbed modes. We test this prediction by using QSO Lyα\alpha absorption samples. The results show that the weakly non-linear features for both the transmitted flux and identified forest lines are quasi-localized. The locality and monotonic properties provide a solid basis for a DWT scale-by-scale Gaussianization reconstruction algorithm proposed by Feng & Fang (Feng & Fang, 2000) for data in the weakly non-linear regime. With the Zel'dovich solution, we find also that the major non-Gaussianity caused by the weakly non-linear evolution is local scale-scale correlations. Therefore, to have a precise recovery of the initial Gaussian mass field, it is essential to remove the scale-scale correlations.Comment: 22 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Tensions and Luscher Terms for (2+1)-dimensional k-strings from Holographic Models

    Full text link
    The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luscher term associated with their quantum fluctuations which is typically a 1/L correction to the energy. We review the status of tensions and Luscher terms in the context of lattice gauge theory, Hamiltonian methods, and gauge/gravity correspondence. Furthermore we explore how different representations of the k-string manifest themselves in the gauge/gravity duality. We calculate the Luscher term for a strongly coupled SU(N) gauge theory in (2+1) dimensions using the gauge/gravity correspondence. Namely, we compute one-loop corrections to a probe D4-brane embedded in the Cvetic, Gibbons, Lu, and Pope supergravity background. We investigate quantum fluctuations of both the bosonic and the fermionic sectors.Comment: 39 pages, reference added, same version to be published in JHE

    Hadronic Density of States from String Theory

    Full text link
    Exactly soluble string theories describing a particular hadronic sector of certain confining gauge theories have been obtained recently as Penrose-Gueven limits of the dual supergravity backgrounds. The effect of taking the Penrose-Gueven limit on the gravity side translates, in the gauge theory side, into an effective truncation to hadrons of large U(1) charge (annulons). We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Gueven limit of the Maldacena-Nunez embedding of N=1 SYM into string theory. It is established that the theory exhibits a Hagedorn density of states. Motivated by this exact calculation we propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.Comment: 15 page
    corecore