6,162 research outputs found
Underlying symmetries of realistic interactions and the nuclear many-body problem
The present study brings forward important information, within the framework
of spectral distribution theory, about the types of forces that dominate three
realistic interactions, CD-Bonn, CDBonn+ 3terms and GXPF1, in nuclei and their
ability to account for many-particle effects such as the formation of
correlated nucleon pairs and enhanced quadrupole collective modes.
Like-particle and proton-neutron isovector pairing correlations are described
microscopically by a model interaction with Sp(4) dynamical symmetry, which is
extended to include an additional quadrupole-quadrupole interaction. The
analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and
GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the
latter appears to build up more (less) rotational isovector T = 1 (isoscalar T
= 0) collective features. Furthermore, the three realistic interactions are in
general found to correlate strongly with the pairing+quadrupole model
interaction, especially for the highest possible isospin group of states where
the model interaction can be used to provide a reasonable description of the
corresponding energy spectra.Comment: 12 pages, 4 figure
Multiplierz: An Extensible API Based Desktop Environment for Proteomics Data Analysis
BACKGROUND. Efficient analysis of results from mass spectrometry-based proteomics experiments requires access to disparate data types, including native mass spectrometry files, output from algorithms that assign peptide sequence to MS/MS spectra, and annotation for proteins and pathways from various database sources. Moreover, proteomics technologies and experimental methods are not yet standardized; hence a high degree of flexibility is necessary for efficient support of high- and low-throughput data analytic tasks. Development of a desktop environment that is sufficiently robust for deployment in data analytic pipelines, and simultaneously supports customization for programmers and non-programmers alike, has proven to be a significant challenge. RESULTS. We describe multiplierz, a flexible and open-source desktop environment for comprehensive proteomics data analysis. We use this framework to expose a prototype version of our recently proposed common API (mzAPI) designed for direct access to proprietary mass spectrometry files. In addition to routine data analytic tasks, multiplierz supports generation of information rich, portable spreadsheet-based reports. Moreover, multiplierz is designed around a "zero infrastructure" philosophy, meaning that it can be deployed by end users with little or no system administration support. Finally, access to multiplierz functionality is provided via high-level Python scripts, resulting in a fully extensible data analytic environment for rapid development of custom algorithms and deployment of high-throughput data pipelines. CONCLUSION. Collectively, mzAPI and multiplierz facilitate a wide range of data analysis tasks, spanning technology development to biological annotation, for mass spectrometry-based proteomics research.Dana-Farber Cancer Institute; National Human Genome Research Institute (P50HG004233); National Science Foundation Integrative Graduate Education and Research Traineeship grant (DGE-0654108
Particle decay branching ratios for states of astrophysical importance in 19Ne
We have measured proton and alpha-particle branching ratios of excited states
in 19Ne formed using the 19F(3He,t) reaction at a beam energy of 25 MeV. These
ratios have a large impact on the astrophysical reaction rates of
15O(alpha,gamma), 18F(p,gamma) and 18F(p,alpha), which are of interest in
understanding energy generation in x-ray bursts and in interpreting anticipated
gamma-ray observations of novae. We detect decay protons and alpha-particles
using a silicon detector array in coincidence with tritons measured in the
focal plane detector of our Enge split-pole spectrograph. The silicon array
consists of five strip detectors of the type used in the Louvain-Edinburgh
Detector Array, subtending angles from 130 degrees to 165 degrees with
approximately 14% lab efficiency. The correlation angular distributions give
additional confidence in some prior spin-parity assignments that were based on
gamma branchings. We measure Gamma_p/Gamma=0.387+-0.016 for the 665 keV proton
resonance, which agrees well with the direct measurement of Bardayan et al.Comment: 5 pages, 2 figures, 3 tables. Prepared using RevTex 4 and BibTex.
Further minor revisions, incl. fig. 1 font size increase, 1 table removal,
and minor changes to the tex
Regularities with random interactions in energy centroids defined by group symmetries
Regular structures generated by random interactions in energy centroids
defined over irreducible representations (irreps) of some of the group
symmetries of the interacting boson models IBM, IBM, IBM- and
IBM- are studied by deriving trace propagations equations for the
centroids. It is found that, with random interactions, the lowest and highest
group irreps in general carry most of the probability for the corresponding
centroids to be lowest in energy. This generalizes the result known earlier,
via numerical diagonalization, for the more complicated fixed spin ()
centroids where simple trace propagation is not possible.Comment: 18 pages, 3 figure
- …
