27,311 research outputs found
Evolutionary consequences of behavioral diversity
Iterated games provide a framework to describe social interactions among
groups of individuals. Recent work stimulated by the discovery of
"zero-determinant" strategies has rapidly expanded our ability to analyze such
interactions. This body of work has primarily focused on games in which players
face a simple binary choice, to "cooperate" or "defect". Real individuals,
however, often exhibit behavioral diversity, varying their input to a social
interaction both qualitatively and quantitatively. Here we explore how access
to a greater diversity of behavioral choices impacts the evolution of social
dynamics in finite populations. We show that, in public goods games, some
two-choice strategies can nonetheless resist invasion by all possible
multi-choice invaders, even while engaging in relatively little punishment. We
also show that access to greater behavioral choice results in more "rugged "
fitness landscapes, with populations able to stabilize cooperation at multiple
levels of investment, such that choice facilitates cooperation when returns on
investments are low, but hinders cooperation when returns on investments are
high. Finally, we analyze iterated rock-paper-scissors games, whose
non-transitive payoff structure means unilateral control is difficult and
zero-determinant strategies do not exist in general. Despite this, we find that
a large portion of multi-choice strategies can invade and resist invasion by
strategies that lack behavioral diversity -- so that even well-mixed
populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure
Rapid evaluation of ion thruster lifetime using optical emission spectroscopy
A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters
The November 1987 eclipse of the zeta-Aur system HR 2554
It is confirmed that HR 2554 (G6 II + A0 V) is an atmospheric eclipsing system of the zeta-Aur type. The IUE observations of the Nov. 1987 eclipse indicate that the eclipse of the A star lasts 4 days and is not total. Absorption lines due to the extended atmosphere of the primary can be seen a day before and after the eclipse and are missing 2 days from first and 4th contact. Thus the outer envelope of the primary extends to less than 1 stellar radius beyond the photosphere. Compared to 22 Vul (G3 Ib-II + B9 V), where the absorption can be traced to a few stellar radii, HR 2554 is a more moderate case of mass outflow, which implies there is reduced interaction of the secondary within the wind from the primary as is seen in the other zeta-Aur systems
IV Chaucer
This chapter has five sections: 1. General; 2. The Canterbury Tales; 3. Troilus and Criseyde; 4. Other Works; 5. Reception and Reputation. Sections 1, 3, and 5 are by Ben Parsons; sections 3 and 4 are by Natalie Jones
Evidence from satellite altimetry for small-scale convection in the mantle
Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways
Cotton spinning to climbing gear: practical aspects of design evolution in Lancashire and the North West of England
This article looks at the role of path dependency in the design of outdoor clothing and equipment, from the perspective of changing and overlapping industrial clusters in Lancashire and Sheffield, from the 1960s. It demonstrates that, unlike the fashion market, design in mountaineering clothing and equipment was originally based heavily upon functionality and hence on user innovation. It shows that skills and knowledge which evolved during the industrial revolution, in both industrial areas, were vitally important to the development of internationally competitive mountaineering equipment firms. It was, however, the way in which these sources of knowledge were combined with sporting expertise that contributed to the design of innovative functional products. In addition, fundamental changes occurred in the relationship between manufacturers and their customers and these were vital to the success of this process, marking a departure from past practice
Application of pushbroom altimetry from space using large space antennas
The capabilities of multibeam altimetry are discussed and an interferometric multibeam technique for doing precision altimetry is described. The antenna feed horn arrangement and the resulting footprint lube pattern are illustrated. Plans for a shuttle multibeam altimetry mission are also discussed
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
© 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
- …
