2,375 research outputs found

    Imperfection Information, Optimal Monetary Policy and Informational Consistency

    Get PDF
    This paper examines the implications of imperfect information (II) for optimal monetary policy with a consistent set of informational assumptions for the modeller and the private sector an assumption we term the informational consistency. We use an estimated simple NK model from Levine et al. (2012), where the assumption of symmetric II significantly improves the fit of the model to US data to assess the welfare costs of II under commitment, discretion and simple Taylor-type rules. Our main results are: first, common to all information sets we find significant welfare gains from commitment only with a zero-lower bound constraint on the interest rate. Second, optimized rules take the form of a price level rule, or something very close across all information cases. Third, the combination of limited information and a lack of commitment can be particularly serious for welfare. At the same time we find that II with lags introduces a ‘tying ones hands’ effect on the policymaker that may improve welfare under discretion. Finally, the impulse response functions under our most extreme imperfect information assumption (output and inflation observed with a two-quarter delay) exhibit hump-shaped behaviour and the fiscal multiplier is significantly enhanced in this case

    Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto

    Get PDF
    LIGO and Virgo recently completed searches for gravitational waves at their initial target sensitivities, and soon Advanced LIGO and Advanced Virgo will commence observations with even better capabilities. In the search for short duration signals, such as coalescing compact binary inspirals or "burst" events, noise transients can be problematic. Interferometric gravitational-wave detectors are highly complex instruments, and, based on the experience from the past, the data often contain a large number of noise transients that are not easily distinguishable from possible gravitational-wave signals. In order to perform a sensitive search for short-duration gravitational-wave signals it is important to identify these noise artifacts, and to "veto" them. Here we describe such a veto, the bilinear-coupling veto, that makes use of an empirical model of the coupling of instrumental noise to the output strain channel of the interferometric gravitational-wave detector. In this method, we check whether the data from the output strain channel at the time of an apparent signal is consistent with the data from a bilinear combination of auxiliary channels. We discuss the results of the application of this veto on recent LIGO data, and its possible utility when used with data from Advanced LIGO and Advanced Virgo.Comment: Minor changes; To appear in Phys. Rev.

    Internal rationality, learning and imperfect information

    Get PDF
    We construct, estimate and explore the monetary policy consequences of a New Keynesian (NK) behavioural model with bounded-rationality and heterogeneous agents. We radically depart from most existing models of this genre in our treatment of bounded rationality and learning. Instead of the usual Euler learning approach, we assume that agents are internally rational (IR) given their beliefs of aggregate states and prices. The model is inhabited by fully rational (RE) and IR agents where the latter use simple heuristic rules to forecast aggregate variables exogenous to their micro-environment. We find that IR results in an NK model with more persistence and a smaller policy space for rule parameters that induce stability and determinacy. In the most general form of the model, agents learn from their forecasting errors by observing and comparing them with those under RE making the composition of the two types endogenous. In a Bayesian estimation with fixed proportions of RE and IR agents and a general heuristic forecasting rule we find that a pure IR model fits the data better than the pure RE case. However, the latter with imperfect rather than the standard perfect information assumption outperforms IR (easily) and RE-IR composites (slightly), but second moment comparisons suggest that the RE-IR composite can match data better. Our findings suggest that Kalman-filtering learning with RE can match bounded-rationality in matching persistence seen in the data

    Pulse Morphology of the Galactic Center Magnetar PSR J1745-2900

    Get PDF
    We present results from observations of the Galactic Center magnetar, PSR J1745-2900, at 2.3 and 8.4 GHz with the NASA Deep Space Network 70 m antenna, DSS-43. We study the magnetar's radio profile shape, flux density, radio spectrum, and single pulse behavior over a ~1 year period between MJDs 57233 and 57621. In particular, the magnetar exhibits a significantly negative average spectral index of α\langle\alpha\rangle = -1.86 ±\pm 0.02 when the 8.4 GHz profile is single-peaked, which flattens considerably when the profile is double-peaked. We have carried out an analysis of single pulses at 8.4 GHz on MJD 57479 and find that giant pulses and pulses with multiple emission components are emitted during a significant number of rotations. The resulting single pulse flux density distribution is incompatible with a log-normal distribution. The typical pulse width of the components is ~1.8 ms, and the prevailing delay time between successive components is ~7.7 ms. Many of the single pulse emission components show significant frequency structure over bandwidths of ~100 MHz, which we believe is the first observation of such behavior from a radio magnetar. We report a characteristic single pulse broadening timescale of τd\langle\tau_{d}\rangle = 6.9 ±\pm 0.2 ms at 8.4 GHz. We find that the pulse broadening is highly variable between emission components and cannot be explained by a thin scattering screen at distances \gtrsim 1 kpc. We discuss possible intrinsic and extrinsic mechanisms for the magnetar's emission and compare our results to other magnetars, high magnetic field pulsars, and fast radio bursts.Comment: 18 pages, 12 figures, Accepted for publication in ApJ on 2018 August 30. v2: Updated to match published versio

    A Study of the 20 Day Superorbital Modulation in the High-Mass X-ray Binary IGR J16493-4348

    Get PDF
    We report on Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory (Swift) X-ray Telescope (XRT) and Swift Burst Alert Telescope (BAT) observations of IGR J16493-4348, a wind-fed Supergiant X-ray Binary (SGXB) showing significant superorbital variability. From a discrete Fourier transform of the BAT light curve, we refine its superorbital period to be 20.058 ±\pm 0.007 days. The BAT dynamic power spectrum and a fractional root mean square analysis both show strong variations in the amplitude of the superorbital modulation, but no observed changes in the period were found. The superorbital modulation is significantly weaker between MJD 55,700 and MJD 56,300. The joint NuSTAR and XRT observations, which were performed near the minimum and maximum of one cycle of the 20 day superorbital modulation, show that the flux increases by more than a factor of two between superorbital minimum and maximum. We find no significant changes in the 3-50 keV pulse profiles between superorbital minimum and maximum, which suggests a similar accretion regime. Modeling the pulse-phase averaged spectra we find a possible Fe Kα\alpha emission line at 6.4 keV at superorbital maximum. The feature is not significant at superorbital minimum. While we do not observe any significant differences between the pulse-phase averaged spectral continua apart from the overall flux change, we find that the hardness ratio near the broad main peak of the pulse profile increases from superorbital minimum to maximum. This suggests the spectral shape hardens with increasing luminosity. We discuss different mechanisms that might drive the observed superorbital modulation.Comment: 17 pages, 14 figures, 3 tables, accepted for publication in The Astrophysical Journal on 2019 May 1

    Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards

    Get PDF
    Lightweight wheelchairs are characterized by their low cost and limited range of adjustment. Our study evaluated three different folding lightweight wheelchair models using the American National Standards Institute/Rehabilitation Engineering Society of North America (ANSI/RESNA) standards to see whether quality had improved since the previous data were reported. On the basis of reports of increasing breakdown rates in the community, we hypothesized that the quality of these wheelchairs had declined. Seven of the nine wheelchairs tested failed to pass the multidrum test durability requirements. An average of 194,502 +/- 172,668 equivalent cycles was completed, which is similar to the previous test results and far below the 400,000 minimum required to pass the ANSI/ RESNA requirements. This was also significantly worse than the test results for aluminum ultralight folding wheelchairs. Overall, our results uncovered some disturbing issues with these wheelchairs and suggest that manufacturers should put more effort into this category to improve quality. To improve the durability of lightweight wheelchairs, we suggested that stronger regulations be developed that require wheelchairs to be tested by independent and certified test laboratories. We also proposed a wheelchair rating system based on the National Highway Transportation Safety Administration vehicle crash ratings to assist clinicians and end users when comparing the durability of different wheelchairs

    PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS

    Get PDF
    A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum instead of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations
    corecore