2,504 research outputs found

    Even-odd parity effects in conductance and shot noise of metal-atomic wire-metal(superconducting) junctions

    Full text link
    In this paper, we study the conductance and shot noise in transport through a multi-site system in a two terminal configuration. The dependence of the transport on the number of atoms in the atomic wire is investigated using a tight-binding Hamiltonian and the nonequilibrium Green's function method. In addition to reproducing the even-odd behavior in the transmission probability at the Fermi energy or the linear response conductance in the normal-atomic wire-normal metallic(NAN) junctions, we find the following: (i) The shot noise is larger in the even-numbered atomic wire than in the odd-numbered wire. (ii) The Andreev conductance displays the same even-odd parity effects in the normal-atomic wire-superconducting(NAS) junctions. In general, the conductance is higher in the odd-numbered atomic wire than in the even-numbered wire. When the number of sites (NN) is odd and the atomic wire is mirror symmetric with respect to the center of the atomic wire, the conductance does not depend on the details of the hopping matrices in the atomic wire, but is solely determined by the coupling strength to the two leads. When NN is even, the conductance is sensitive to the values of the hopping matrices.Comment: 12 pages, 9 figure

    ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device

    Get PDF
    We present an {\it ab initio} analysis of electron conduction through a C60C_{60} molecular device. Charge transfer from the device electrodes to the molecular region is found to play a crucial role in aligning the lowest unoccupied molecular orbital (LUMO) of the C60C_{60} to the Fermi level of the electrodes. This alignment induces a substantial device conductance of 2.2×(2e2/h)\sim 2.2 \times (2e^2/h). A gate potential can inhibit charge transfer and introduce a conductance gap near EFE_F, changing the current-voltage characteristics from metallic to semi-conducting, thereby producing a field effect molecular current switch

    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases

    Get PDF
    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Model-independent evidence for J/ψpJ/\psi p contributions to Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays

    Get PDF
    The data sample of Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays acquired with the LHCb detector from 7 and 8~TeV pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}, is inspected for the presence of J/ψpJ/\psi p or J/ψKJ/\psi K^- contributions with minimal assumptions about KpK^- p contributions. It is demonstrated at more than 9 standard deviations that Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays cannot be described with KpK^- p contributions alone, and that J/ψpJ/\psi p contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for Pc+J/ψpP_c^+\to J/\psi p charmonium-pentaquark states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the end

    Observation of the Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay

    Get PDF
    The Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay is observed in pppp collision data corresponding to an integrated luminosity of 3 fb1^{-1} recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the Bs0B_s^0 meson is measured to be 5367.08±0.38±0.155367.08\,\pm \,0.38\,\pm\, 0.15 MeV/c2^2. The branching fraction ratio B(Bs0J/ψϕϕ)/B(Bs0J/ψϕ)\mathcal{B}(B_s^0 \rightarrow J/\psi \phi \phi)/\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) is measured to be 0.0115±0.00120.0009+0.00050.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant Bs0J/ψϕK+KB_s^0 \rightarrow J/\psi \phi K^+ K^- or Bs0J/ψK+KK+KB_s^0 \rightarrow J/\psi K^+ K^- K^+ K^- decays is found.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+J/ψK+B^+ \to J/\psi \, K^+ and B0J/ψK0B^0 \to J/\psi \, K^{*0} using 3.0fb13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7TeV7\mathrm{\,TeV} and 8TeV8\mathrm{\,TeV}. Its tagging power on these samples of BJ/ψXB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
    corecore