434 research outputs found
Testing the performance of a blind burst statistic
In this work we estimate the performance of a method for the detection of
burst events in the data produced by interferometric gravitational wave
detectors. We compute the receiver operating characteristics in the specific
case of a simulated noise having the spectral density expected for Virgo, using
test signals taken from a library of possible waveforms emitted during the
collapse of the core of Type II Supernovae.Comment: 8 pages, 6 figures, Talk given at the GWDAW2002 worksho
The status of VIRGO
In this paper the main characteristics of the interferometric gravitational waves detector Virgo are presented as well as its present status and perspectives
The Virgo interferometric gravitational antenna
Submitted to: Class. Quantum Grav.The interferometric gravitational wave detectors represent the ultimate evolution of the classical Michelson interferometer. In order to measure the signal produced by the passage of a gravitational wave, they aim to reach unprecedent sensitivities in measuring the relative displacements of the mirrors. One of them , the 3-km-long Virgo gravitational wave antenna, which will be particularly sensitive in the low frequency range (10-100 Hz), is presently in its commissioning phase. In this paper the various techniques developed in order to reach its target extreme performance are outlined
Low loss coatings for the VIRGO large mirrors
présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)
Length Sensing and Control in the Virgo Gravitational Wave Interferometer
The gravitational wave detector Virgo is presently being commissioned. A significant part of last year was spent in setting up the cavity length control system. This work was carried out with steps of increasing complexity: locking a simple Fabry-Perot cavity, then a Michelson interferometer with Fabry-Perot cavities in both arms, and finally recycling the light beam into the interferometer. The applied strategy and the main results obtained are describe
Otx015 epi‐drug exerts antitumor effects in ovarian cancer cells by blocking gnl3‐mediated radioresistance mechanisms: Cellular, molecular and computational evidence
Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra‐Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015‐mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC
Search for non-Gaussian events in the data of the VIRGO E4 engineering run
International audienc
Discovery of chemotherapy-associated ovarian cancer antigens by interrogating memory T cells
According to the immunogenic cell death hypothesis, clinical chemotherapy treatments may result in CD8(+) and CD4(+) T-cell responses against tumor cells. To discover chemotherapy-associated antigens (CAAs), T cells derived from ovarian cancer (OC) patients (who had been treated with appropriate chemotherapy protocols) were interrogated with proteins isolated from primary OC cells. We screened for immunogenicity using two-dimensional electrophoresis gel-eluted OC proteins. Only the selected immunogenic antigens were molecularly characterized by mass-spectrometry-based analysis. Memory T cells that recognized antigens associated with apoptotic (but not live) OC cells were correlated with prolonged survival in response to chemotherapy, supporting the model of chemotherapy-induced apoptosis as an adjuvant of anti-tumor immunity. The strength of both memory CD4(+) and CD8(+) T cells producing either IFN- or IL-17 in response to apoptotic OC antigens was also significantly greater in Responders to chemotherapy than in nonresponders. Immunogenicity of some of these antigens was confirmed using recombinant proteins in an independent set of patients. The T-cell interrogation system represents a strategy of reverse tumor immunology that proposes to identify CAAs, which may then be validated as possible prognostic tumor biomarkers or cancer vaccines
Autoimmune polyendocrine syndrome type 1: an Italian survey on 158 patients
Background Autoimmune Polyglandular Syndrome type 1 (APS-1) is a rare recessive inherited disease, caused by AutoImmune Regulator (AIRE) gene mutations and characterized by three major manifestations: chronic mucocutaneous candidiasis (CMC), chronic hypoparathyroidism (CH) and Addison's disease (AD). Methods Autoimmune conditions and associated autoantibodies (Abs) were analyzed in 158 Italian patients (103 females and 55 males; F/M 1.9/1) at the onset and during a follow-up of 23.7 +/- 15.1 years. AIRE mutations were determined. Results The prevalence of APS-1 was 2.6 cases/million (range 0.5-17 in different regions). At the onset 93% of patients presented with one or more components of the classical triad and 7% with other components. At the end of follow-up, 86.1% had CH, 77.2% AD, 74.7% CMC, 49.5% premature menopause, 29.7% autoimmune intestinal dysfunction, 27.8% autoimmune thyroid diseases, 25.9% autoimmune gastritis/pernicious anemia, 25.3% ectodermal dystrophy, 24% alopecia, 21.5% autoimmune hepatitis, 17% vitiligo, 13.3% cholelithiasis, 5.7% connective diseases, 4.4% asplenia, 2.5% celiac disease and 13.9% cancer. Overall, 991 diseases (6.3 diseases/patient) were found. Interferon-omega Abs (IFN omega Abs) were positive in 91.1% of patients. Overall mortality was 14.6%. The AIRE mutation R139X was found in 21.3% of tested alleles, R257X in 11.8%, W78R in 11.4%, C322fsX372 in 8.8%, T16M in 6.2%, R203X in 4%, and A21V in 2.9%. Less frequent mutations were present in 12.9%, very rare in 9.6% while no mutations in 11% of the cases. Conclusions In Italy, APS-1 is a rare disorder presenting with the three major manifestations and associated with different AIRE gene mutations. IFN omega Abs are markers of APS-1 and other organ-specific autoantibodies are markers of clinical, subclinical or potential autoimmune conditions
- …
