248 research outputs found
The Role of Individual Variables, Organizational Variables and Moral Intensity Dimensions in Libyan Management Accountants’ Ethical Decision Making
This study investigates the association of a broad set of variables with the ethical decision making of management accountants in Libya. Adopting a cross-sectional methodology, a questionnaire including four different ethical scenarios was used to gather data from 229 participants. For each scenario, ethical decision making was examined in terms of the recognition, judgment and intention stages of Rest’s model. A significant relationship was found between ethical recognition and ethical judgment and also between ethical judgment and ethical intention, but ethical recognition did not significantly predict ethical intention—thus providing support for Rest’s model. Organizational variables, age and educational level yielded few significant results. The lack of significance for codes of ethics might reflect their relative lack of development in Libya, in which case Libyan companies should pay attention to their content and how they are supported, especially in the light of the under-development of the accounting profession in Libya. Few significant results were also found for gender, but where they were found, males showed more ethical characteristics than females. This unusual result reinforces the dangers of gender stereotyping in business. Personal moral philosophy and moral intensity dimensions were generally found to be significant predictors of the three stages of ethical decision making studied. One implication of this is to give more attention to ethics in accounting education, making the connections between accounting practice and (in Libya) Islam. Overall, this study not only adds to the available empirical evidence on factors affecting ethical decision making, notably examining three stages of Rest’s model, but also offers rare insights into the ethical views of practising management accountants and provides a benchmark for future studies of ethical decision making in Muslim majority countries and other parts of the developing world
(3S,4R)-4-(4-Fluorophenyl)-3-(hydroxymethyl)piperidinium chloride1
The title compound, C12H17FNO+·Cl−, is a degradation impurity of paroxetine hydrochloride hemihydrate (PAXIL), an antidepressant belonging to the group of drugs called selective serotonin reuptake inhibitors (SSRIs). Similar to the paroxetine hydrochloride salt with protonation having taken place on the basic piperidine ring, the degradation impurity also exists as the hydrochloride salt. The cyclic six-membered piperidinium ring adopts a chair conformation with the hydroxymethyl and 4-fluorophenyl groups in the equatorial positions. The ions form a tape along the b axis through charge-assisted N+—H⋯Cl− hydrogen bonds; these tapes are connected by O—H⋯Cl− hydrogen bonds along the a axis
Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis
Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Å, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies
A guide to the crystallographic analysis of icosahedral viruses
Determining the structure of an icosahedral virus crystal by X-ray diffraction follows very much the same course as conventional protein crystallography. The major differences arise from the relatively large sizes of the particles, which significantly affect the data collection process, data processing and management, and later, the refinement of a model. Most of the other differences are due to the high 5 3 2 point group symmetry of icosahedral viruses. This alters dramatically the means by which initial phases are obtained by molecular substitution, extended to higher resolution by electron density averaging and density modification, and the refinement of the structure in the light of high non-crystallographic symmetry. In this review, we attempt to lead the investigator through the various steps involved in solving the structure of a virus crystal. These steps include the purification of viruses, their crystallization, the recording of X-ray diffraction data, and its reduction to structure amplitudes. It further addresses the problems attending phase determination and ultimately the refinement of a model. Finally, we describe the unique properties of virus crystals and the factors that influence their physical and diffraction properties
Recommended from our members
A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure
1
Bridging the gaps in high-throughput crystallography: upstream and downstream developments for ACTOR
- …
