104 research outputs found
Perceived Benefits, Barriers, and Facilitators of a Digital Patient-Reported Outcomes Tool for Routine Diabetes Care:Protocol for a National, Multicenter, Mixed Methods Implementation Study
Interactive effects of mGlu5 and 5-HT2A receptors on locomotor activity in mice
RationaleMetabotropic glutamate (mGlu) receptors have been suggested to play a role in neuropsychiatric disorders including schizophrenia, drug abuse, and depression. Because serotonergic hallucinogens increase glutamate release and mGlu receptors modulate the response to serotonin (5-HT)(2A) activation, the interactions between serotonin 5-HT(2A) receptors and mGlu receptors may prove to be important for our understanding of these diseases.ObjectiveWe tested the effects of the serotonergic hallucinogen and 5-HT(2A) agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), and the selective 5-HT(2A) antagonist, M100907, on locomotor activity in the mouse behavioral pattern monitor (BPM) in mGlu5 wild-type (WT) and knockout (KO) mice on a C57 background.ResultsBoth male and female mGlu5 KO mice showed locomotor hyperactivity and diminished locomotor habituation compared with their WT counterparts. Similarly, the mGlu5-negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP) also increased locomotor hyperactivity, which was absent in mGlu5 KO mice. The locomotor hyperactivity in mGlu5 receptor KO mice was potentiated by DOM (0.5 mg/kg, subcutaneously (SC)) and attenuated by M100907 (1.0 mg/kg, SC). M100907 (0.1 mg/kg, SC) also blocked the hyperactivity induced by MPEP.ConclusionsThese studies demonstrated that loss of mGlu5 receptor activity either pharmacologically or through gene deletion leads to locomotor hyperactivity in mice. Additionally, the gene deletion of mGlu5 receptors increased the behavioral response to the 5-HT(2A) agonist DOM, suggesting that mGlu5 receptors either mitigate the behavioral effects of 5-HT(2A) hallucinogens or that mGlu5 KO mice show an increased sensitivity to 5-HT(2A) agonists. Taken together, these studies indicate a functional interaction between mGlu5 and 5-HT(2A) receptors
Lesion of the Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats
Abnormal synchronous activation of the glutamatergic olivo-cerebellar pathway has been suggested to be crucial for the harmaline-induced tremor. The cerebellum receives two catecholaminergic pathways: the dopaminergic pathway arising from the ventral tegmental area/substantia nigra pars compacta, and the noradrenergic one from the locus coeruleus. The aim of the present study was to examine a contribution of the cerebellar catecholaminergic innervations to the harmaline-induced tremor in rats. Rats were injected bilaterally into the cerebellar vermis with 6-hydroxydopamine (6-OHDA; 8 μg/0.5 μl) either alone or this treatment was preceded (30 min earlier) by desipramine (15 mg/kg ip). Harmaline was administered to animals in doses of 7.5 or 15 mg/kg ip. Tremor of forelimbs was measured as a number of episodes during a 90-min observation. Rats were killed by decapitation 30 or 120 min after harmaline treatment. The levels of dopamine, noradrenaline, serotonin, and their metabolites were measured by HPLC in the cerebellum, substantia nigra, caudate–putamen, and frontal cortex. 6-OHDA injected alone enhanced the harmaline-induced tremor. Furthermore, it decreased the noradrenaline level by ca. 40–80% in the cerebellum and increased the levels of serotonin and 5-HIAA in the caudate–putamen and frontal cortex in untreated and/or harmaline-treated animals. When 6-OHDA treatment was preceded by desipramine, it decreased dopaminergic transmission in some regions of the cerebellum while inducing its compensatory activation in others. The latter lesion did not markedly influence the tremor induced by harmaline. The present study indicates that noradrenergic innervation of the cerebellum interacts with cerebral serotonergic systems and plays an inhibitory role in the harmaline-induced tremor
The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes
Keratan sulphate in the tumour environment
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes
The role of dietary fatty acid intake in inflammatory gene expression: a critical review
An exploration of the dynamic longitudinal relationship between mental health and alcohol consumption: a prospective cohort study
SWOT analysis of Polish rural areas in the light of Polish membership in the European Union
The presented prognosis indicates possible directions and conditions of changes that will take place in the Polish countryside within the next few years. It should be underlined that this period will encompass both positive and negative processes. During this period 2.5 billion Euros (not including money for the Common Agricultural Policy) will be devoted to the development of rural areas. Together with domestic funds, it makes a total sum of 3 billion Euros of available financial resources. Having topped these funds up with investors’ own contributions, it will be possible to deal with total financial support of 4.5 - 4.9 billion Euros per annum. This will allow us to change the image of rural areas considerably, especially the level of technical infrastructure and the quality of productive potential of agriculture, as well as agribusiness. Therefore, the countryside and farms will have many more investment opportunities at their disposal. It is predicted that these funds should first of all be devoted to creating new work opportunities in rural areas and subsequently to improve competitiveness of farms due to their progressive concentration and technical modernisation. These processes are strongly related to each other and, therefore, one should not suppose considerable regional farm concentration without providing workplaces for farmers, especially the least skilled. On the other hand, one should mention processes that will make carrying out the intentions difficult. One of them is undoubtedly further limitation of agricultural expenses, especially after year 2013 (Common Agricultural Policy included). The reform of Common Agricultural Policy that took place in 2003 assumed stabilisation of expenses on agriculture as well as their gradual reinvesting in I and II Common Agricultural Policy levels. Further changes that might take place in the subsequent period of planning (2014-2020) are not yet known, which significantly limits the possibilities of outlining aims and priorities for Poland. It should be assumed that further limitations of funds for agriculture and rural areas in general are yet to come. The above mentioned is supported by the following three reasons: - More and more popular criticism of the Common Agricultural Policy as it is shaped right now, - Funds for Common Agricultural Policy after new members with big agricultural population (Bulgaria, Romania, Croatia, Turkey) would need to be increased, - Negotiations related to liberalisation of world markets within WTO
- …
