294 research outputs found

    The dynamical mass and evolutionary status of the type-II Cepheid in the eclipsing binary system OGLE-LMC-T2CEP-211 with a double-ring disk

    Full text link
    We present the analysis of a peculiar W~Virginis (pWVir) type-II Cepheid, OGLE-LMC-T2CEP-211 (Ppuls=9.393dP_{puls}=9.393\,d), in a double-lined binary system (Porb=242dP_{orb}=242\,d), which shed light on virtually unknown evolutionary status and structure of pWVir stars. The dynamical mass of the Cepheid (first ever for a type-II Cepheid) is 0.64±0.02M0.64\pm{}0.02\,M_\odot and the radius R=25.1±0.3RR=25.1\pm{}0.3\,R_\odot. The companion is a massive (5.67M5.67\,M_\odot) main-sequence star obscured by a disk. Such configuration suggests a mass transfer in the system history. We found that originally the system (Porbinit=12dP_{orb}^{init}=12\,d) was composed of 3.53.5 and 2.8M2.8\,M_\odot stars, with the current Cepheid being more massive. The system age is now \sim{}200 My, and the Cepheid is almost completely stripped of hydrogen, with helium mass of 92%\sim{}92\% of the total mass. It finished transferring the mass 2.5 My ago and is evolving towards lower temperatures passing through the instability strip. Comparison with observations indicate a reasonable 2.7108M/y2.7\cdot{}10^{-8}\,M_\odot/y mass loss from the Cepheid. The companion is most probably a Be main-sequence star with T=22000KT=22000\,K and R=2.5RR=2.5\,R_\odot. Our results yield a good agreement with a pulsation theory model for a hydrogen-deficient pulsator, confirming the described evolutionary scenario. We detected a two-ring disk (Rdisk116RR_{disk}\sim\,116\,R_{\odot}) and a shell (Rshell9RR_{shell}\sim\,9\,R_{\odot}) around the companion, that is probably a combination of the matter from the past mass transfer, the mass being lost by the Cepheid due to wind and pulsations, and a decretion disk around a rapidly rotating secondary. Our study together with observational properties of pWVir stars suggests that their majority are products of a similar binary evolution interaction.Comment: 21 pages, 14 figures, 6 tables, accepted for publication in Ap

    The ongoing pursuit of R Coronae Borealis stars: the ASAS-3 survey strikes again

    Get PDF
    CONTEXT: R Coronae Borealis stars( RCBs) are rare, hydrogen-deficient, carbon rich super giant variable stars that are likely the evolved merger products of pairs of CO and He white dwarfs. Only 55 RCB stars have been found in our galaxy and their distribution on the sky is weighted heavily by microlensing survey field positions. A less biased wide-area survey would enable us to test competing evolutionary scenarios, understand the population or populations that produce RCBs, and constrain their formation rate. AIMS: The ASAS-3 survey monitored the sky south of declination +28deg between 2000 and 2010 to a limiting magnitude of V = 14. We searched ASAS-3 for RCB variables using several different methods to ensure that the probability of RCB detection was as high as possible and to reduce selection biases based on luminosity, temperature, dust production activity and shell brightness. METHODS: Candidates whose light curves were visually inspected were pre-selected based on their infrared (IR) excesses due to warm dust in their circumstellar shells using the WISE and/or 2MASS catalogues. Criteria on light curve variability were also applied when necessary to minimise the number of objects. Initially, we searched for RCB stars among the ASAS-3 ACVS1.1 variable star catalogue, then among the entire ASAS-3 south source catalogue, and finally directly interrogated the light curve database for objects that were not catalogued in either of those. We then acquired spectra of 104 stars to determine their real nature using the SSO/WiFeS spectrograph. RESULTS: We report 21 newly discovered RCB stars and 2 new DY Per stars. Two previously suspected RCB candidates were also spectroscopically confirmed. Our methods allowed us to extend our detection efficiency to fainter magnitudes that would not have been easily accessible to discovery techniques based onlight curve variability. The overall detection efficiencyis about 90% for RCBs with maximum light brighter than V ∼13. CONCLUSIONS: With these new discoveries, 76 RCBs are now known in our Galaxy and 22 in the Magellanic Clouds. This growing sample is of great value to constrain the peculiar and disparate atmosphere composition of RCBs. Most importantly, we show that the spatial distribution and apparent magnitudes of Galactic RCB stars is consistent with RCBs being part of the Galactic bulge population.Department of HE and Training approved lis

    Multiplicity of Galactic Cepheids from long-baseline interferometry. II. The Companion of AX Circini revealed with VLTI/PIONIER

    Full text link
    Aims: We aim at detecting and characterizing the main-sequence companion of the Cepheid AX Cir (PorbP_\mathrm{orb} \sim 18 yrs). The long-term objective is to estimate the mass of both components and the distance to the system. Methods: We used the PIONIER combiner at the VLT Interferometer to obtain the first interferometric measurements of the short-period Cepheid AX Cir and its orbiting component. Results: The companion is resolved by PIONIER at a projected separation ρ=29.2±0.2\rho = 29.2 \pm 0.2 mas and projection angle PA=167.6±0.3PA = 167.6 \pm 0.3^{\circ}. We measured HH-band flux ratios between the companion and the Cepheid of 0.90±0.100.90 \pm 0.10 % and 0.75±0.170.75 \pm 0.17 %, respectively at a pulsation phase for the Cepheid ϕ=0.24\phi = 0.24 and 0.48. The lower contrast at ϕ=0.48\phi = 0.48 is due to increased brightness of the Cepheid compared to the ϕ=0.24\phi = 0.24. This gives an average apparent magnitude mH(comp)=9.06±0.24m\mathrm{_H (comp)} = 9.06 \pm 0.24 mag. The limb-darkened angular diameter of the Cepheid at the two pulsation phases was measured to be θLD=0.839±0.023\theta_\mathrm{LD} = 0.839 \pm 0.023 mas and θLD=0.742±0.020\theta_\mathrm{LD} = 0.742 \pm 0.020 mas, respectively at ϕ=0.24\phi = 0.24 and 0.48. A lower limit on the total mass of the system was also derived based on our measured separation, we found MT9.7±0.6MM_\mathrm{T} \geq 9.7 \pm 0.6 M_\odot.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore