138 research outputs found
Electrical Noise From Phase Separation In Pr2/3Ca1/3MnO3 Single Crystal
Low frequency electrical noise measurements have been used to probe the
electronic state of the perovskite-type manganese oxide Pr2/3Ca1/3MnO3 versus
temperature and in the vicinity of the field-induced transition from the
insulating, charge-ordered state (I-CO) to the metallic, ferromagnetic state
(M-F). At high temperature we have observed a high level of the excess noise
with mainly a gaussian distribution of the resistance fluctuations, and the
associated power spectral density has a standard 1/f dependence. However, in
the hysteretic region, where the electrical resistance depends dramatically on
the sample history, we have observed a huge non-gaussian noise characterized by
two level fluctuator-like switching (TLS) in the time domain. We discuss the
origin of the noise in terms of percolative behavior of the conductivity. We
speculate that the dominant fluctuators are manganese clusters switching
between the M-F and the I-CO phases.Comment: RevTeX, 6 pages with 3 figure
Orbiton-mediated multi-phonon scattering in LaSrMnO
We report on Raman scattering measurements of single crystalline
LaSrMnO (=0, 0.06, 0.09 and 0.125), focusing on the high
frequency regime. We observe multi-phonon scattering processes up to
fourth-order which show distinct features: (i) anomalies in peak energy and its
relative intensity and (ii) a pronounced temperature-, polarization-, and
doping-dependence. These features suggest a mixed orbiton-phonon nature of the
observed multi-phonon Raman spectra.Comment: 6pages, 6figures, submitted to PR
Pressure-induced melting of the orbital polaron lattice in La1-xSrxMnO3
We report on the pressure effects on the orbital polaron lattice in the
lightly doped manganites , with . The
dependence of the orbital polaron lattice on chemical pressure is
studied by substituting Pr for La in
. In addition, we have studied
its hydrostatic pressure dependence in
. Our results strongly
indicate that the hopping significantly contributes to the stabilization of
the orbital polaron lattice and that the orbital polarons are ferromagnetic
objects which get stabilized by local double exchange processes. The analysis
of short range orbital correlations and the verification of the Grueneisen
scaling by hard x-ray, specific heat and thermal expansion data reinforces our
conclusions.Comment: 7 figure
Lattice and spin excitations in multiferroic h-YMnO3
We used Raman and terahertz spectroscopies to investigate lattice and
magnetic excitations and their cross-coupling in the hexagonal YMnO3
multiferroic. Two phonon modes are strongly affected by the magnetic order.
Magnon excitations have been identified thanks to comparison with neutron
measurements and spin wave calculations but no electromagnon has been observed.
In addition, we evidenced two additional Raman active peaks. We have compared
this observation with the anti-crossing between magnon and acoustic phonon
branches measured by neutron. These optical measurements underly the unusual
strong spin-phonon coupling
Radiation hardening of Rare-Earth doped fiber amplifiers
We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a
real-time analysis in active configuration, we evaluated the role
of Ce in the improvement of the amplifier performance against
ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the nearinfrared
region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other
hand, in the Ce-free fiber, the higher lifetime variation shows stronger local modifications around the Er3+-ions with the absence of Ce
Existence of orbital polarons in ferromagnetic insulating LaSrMnO (0.110.14) evidenced by giant phonon softening
We present an inelastic light scattering study of single crystalline
(LaPr)SrMnO (, and
,). A giant softening up to 20 - 30 cm of the
Mn-O breathing mode has been observed only for the ferromagnetic insulating
(FMI) samples () upon cooling below the Curie
temperature. With increasing Pr-doping the giant softening is gradually
suppressed. This is attributed to a coupling of the breathing mode to orbital
polarons which are present in the FMI phase.Comment: 4 pages, 5 figure
Radiation hardening techniques for rare-earth based optical fibers and amplifiers
Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our
approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers.
We showed that adding cerium inside the fiber phosphosilicate-based core strongly decreases the fiber radiation
sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by
helping identifying the best amplifier configuration for operation in the radiative environment
Transport and superconducting properties of Fe-based superconductors: SmFeAs(O1-x Fx) versus Fe1+y (Te1-x, Sex)
We present transport and superconducting properties - namely resistivity,
magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper
critical field - of two different families of Fe-based superconductors, which
can be viewed in many respects as end members: SmFeAs(O1-xFx) with the largest
Tc and the largest anisotropy and Fe1+y(Te1-x,Sex), with the largest Hc2, the
lowest Tc and the lowest anisotropy. In the case of the SmFeAs(O1-xFx) series,
we find that a single band description allows to extract an approximated
estimation of band parameters such as carrier density and mobility from
experimental data, although the behaviour of Seebeck effect as a function of
doping demonstrates that a multiband description would be more appropriate. On
the contrary, experimental data of the Fe1+y(Te1-x,Sex) series exhibit a
strongly compensated behaviour, which can be described only within a multiband
model. In the Fe1+y(Te1-x,Sex) series, the role of the excess Fe, tuned by Se
stoichiometry, is found to be twofold: it dopes electrons in the system and it
introduces localized magnetic moments, responsible for Kondo like scattering
and likely pair-breaking of Cooper pairs. Hence, excess Fe plays a crucial role
also in determining superconducting properties such as the Tc and the upper
critical field Bc2. The huge Bc2 values of the Fe1+y(Te1-x,Sex) samples are
described by a dirty limit law, opposed to the clean limit behaviour of the
SmFeAs(O1-xFx) samples. Hence, magnetic scattering by excess Fe seems to drive
the system in the dirty regime, but its detrimental pairbreaking role seems not
to be as severe as predicted by theory. This issue has yet to be clarified,
addressing the more fundamental issue of the interplay between magnetism and
superconductivity
Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films
By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre-
pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320
C epitaxial growth is achieved. Depending on deposition parameters the films
show metallic or semiconducting behavior. At high (low) deposition temperature
the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples
have a large negative magnetoresistance which peaks at the Curie temperature.
The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in
agreement with the expected value for an ideal ferrimagnetic arrangement. We
found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K,
corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair.
In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due
to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike
contribution dominates the Hall voltage, which vanishes at low temperatures for
the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages,
including 5 pictures and 1 Table, submitted to Phys. Rev.
Optical study of orbital excitations in transition-metal oxides
The orbital excitations of a series of transition-metal compounds are studied
by means of optical spectroscopy. Our aim was to identify signatures of
collective orbital excitations by comparison with experimental and theoretical
results for predominantly local crystal-field excitations. To this end, we have
studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10,
ranging from early to late transition-metal ions, from t_2g to e_g systems, and
including systems in which the exchange coupling is predominantly
three-dimensional, one-dimensional or zero-dimensional. With the exception of
LaMnO3, we find orbital excitations in all compounds. We discuss the
competition between orbital fluctuations (for dominant exchange coupling) and
crystal-field splitting (for dominant coupling to the lattice). Comparison of
our experimental results with configuration-interaction cluster calculations in
general yield good agreement, demonstrating that the coupling to the lattice is
important for a quantitative description of the orbital excitations in these
compounds. However, detailed theoretical predictions for the contribution of
collective orbital modes to the optical conductivity (e.g., the line shape or
the polarization dependence) are required to decide on a possible contribution
of orbital fluctuations at low energies, in particular in case of the orbital
excitations at about 0.25 eV in RTiO3. Further calculations are called for
which take into account the exchange interactions between the orbitals and the
coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved
calculation of orbital excitation energies in TiOCl, figure 16 improved,
references updated, 33 pages, 20 figure
- …
