4,078 research outputs found
Non-Perturbative Spectrum of Two Dimensional (1,1) Super Yang-Mills at Finite and Large N
We consider the dimensional reduction of N = 1 SYM_{2+1} to 1+1 dimensions,
which has (1,1) supersymmetry. The gauge groups we consider are U(N) and SU(N),
where N is a finite variable. We implement Discrete Light-Cone Quantization to
determine non-perturbatively the bound states in this theory. A careful
analysis of the spectrum is performed at various values of N, including the
case where N is large (but finite), allowing a precise measurement of the 1/N
effects in the quantum theory. The low energy sector of the theory is shown to
be dominated by string-like states. The techniques developed here may be
applied to any two dimensional field theory with or without supersymmetry.Comment: LaTex 18 pages; 5 Encapsulated PostScript figure
The epidemiology of heart failure: The Framingham Study
AbstractCongestive heart failure has become an increasingly frequent reason for hospital admission during the last 2 decades and clearly represents a major health problem. Data from the Framingham Heart Study indicate that the incidence of congestive heart failure increases with age and is higher in men than in women. Hypertension and coronary heart disease are the two most common conditions predating its onset. Diabetes mellitus and electrocardiographic left ventricular hypertrophy are also associated with an increased risk of heart failure. During the 1980s, the annual age-adjusted incidence of congestive heart failure among persons aged ≥ 45 years was 7.2 cases/1,000 in men and 4.7 cases/1,000 in women, whereas the age-adjusted prevalence of overt heart failure was 24/1,000 in men and 25/1,000 in women. Despite improved treatments for ischemic heart disease and hypertension, the age-adjusted incidence of heart failure has declined by only 11%/calendar decade in men and by 17%/calendar decade in women during a 40-year period of observation. In addition., congestive heart failure remains highly lethal, with a median survival time of 1.7 years in men and 3.2 years in women and a 5-year survival rate of 25% in men and 38% in women
Quantum Spectra of Triangular Billiards on the Sphere
We study the quantal energy spectrum of triangular billiards on a spherical
surface. Group theory yields analytical results for tiling billiards while the
generic case is treated numerically. We find that the statistical properties of
the spectra do not follow the standard random matrix results and their peculiar
behaviour can be related to the corresponding classical phase space structure.Comment: 18 pages, 5 eps figure
Penetrating particle ANalyzer (PAN)
PAN is a scientific instrument suitable for deep space and interplanetary
missions. It can precisely measure and monitor the flux, composition, and
direction of highly penetrating particles (100 MeV/nucleon) in deep
space, over at least one full solar cycle (~11 years). The science program of
PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar
physics, space weather and space travel. PAN will fill an observation gap of
galactic cosmic rays in the GeV region, and provide precise information of the
spectrum, composition and emission time of energetic particle originated from
the Sun. The precise measurement and monitoring of the energetic particles is
also a unique contribution to space weather studies. PAN will map the flux and
composition of penetrating particles, which cannot be shielded effectively,
precisely and continuously, providing valuable input for the assessment of the
related health risk, and for the development of an adequate mitigation
strategy. PAN has the potential to become a standard on-board instrument for
deep space human travel.
PAN is based on the proven detection principle of a magnetic spectrometer,
but with novel layout and detection concept. It will adopt advanced particle
detection technologies and industrial processes optimized for deep space
application. The device will require limited mass (~20 kg) and power (~20 W)
budget. Dipole magnet sectors built from high field permanent magnet Halbach
arrays, instrumented in a modular fashion with high resolution silicon strip
detectors, allow to reach an energy resolution better than 10\% for nuclei from
H to Fe at 1 GeV/n
Variational Calculation of the Effective Action
An indication of spontaneous symmetry breaking is found in the
two-dimensional model, where attention is paid to the
functional form of an effective action. An effective energy, which is an
effective action for a static field, is obtained as a functional of the
classical field from the ground state of the hamiltonian interacting
with a constant external field. The energy and wavefunction of the ground state
are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under
antiperiodic boundary conditions. A field configuration that is physically
meaningful is found as a solution of the quantum mechanical Euler-Lagrange
equation in the limit. It is shown that there exists a nonzero field
configuration in the broken phase of symmetry because of a boundary
effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two
references adde
Model for SU(3) vacuum degeneracy using light-cone coordinates
Working in light-cone coordinates, we study the zero-modes and the vacuum in
a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of
the tranverse variables, we dimensionally reduce this model to 1+1 dimensions.
After introducing an appropriate su(3) basis and gauge conditions, we extract
an adjoint field from the model. Quantization of this adjoint field and field
equations lead to two constrained and two dynamical zero-modes. We link the
dynamical zero-modes to the vacuum by writing down a Schrodinger equation and
prove the non-degeneracy of the SU(3) vacuum provided that we neglect the
contribution of constrained zero-modes.Comment: 22 pages, 5 figure
On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation
SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied
in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can
be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction.
On the light-cone, the vacuum structure of this theory is encoded in the
dynamical zero mode of a gluon and a constrained mode of the scalar field. The
latter satisfies a linear constraint, suggesting no nontrivial vacua in the
present paradigm for symmetry breaking on the light-cone. I develop a
diagrammatic method to solve the constraint equation. In the adiabatic
approximation I compute the quantum mechanical potential governing the
dynamical gauge mode. Due to a condensation of the lowest omentum modes of the
dynamical gluons, a centrifugal barrier is generated in the adiabatic
potential. In the present theory however, the barrier height appears too small
to make any impact in this odel. Although the theory is superrenormalisable on
naive powercounting grounds, the removal of ultraviolet divergences is
nontrivial when the constrained mode is taken into account. The open aspects of
this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure
Patient safety in dentistry: development of a candidate 'never event' list for primary care
Introduction The 'never event' concept is often used in secondary care and refers to an agreed list of patient safety incidents that 'should not happen if the necessary preventative measures are in place'. Such an intervention may raise awareness of patient safety issues and inform team learning and system improvements in primary care dentistry.
Objective To identify and develop a candidate never event list for primary care dentistry.
Methods A literature review, eight workshops with dental practitioners and a modified Delphi with 'expert' groups were used to identify and agree candidate never events.
Results Two-hundred and fifty dental practitioners suggested 507 never events, reduced to 27 distinct possibilities grouped across seven themes. Most frequently occurring themes were: 'checking medical history and prescribing' (119, 23.5%) and 'infection control and decontamination' (71, 14%). 'Experts' endorsed nine candidate never event statements with one graded as 'extreme risk' (failure to check past medical history) and four as 'high risk' (for example, extracting wrong tooth).
Conclusion Consensus on a preliminary list of never events was developed. This is the first known attempt to develop this approach and an important step in determining its value to patient safety. Further work is necessary to develop the utility of this method
Dynamics and statistics of heavy particles in turbulent flows
We present the results of Direct Numerical Simulations (DNS) of turbulent
flows seeded with millions of passive inertial particles. The maximum Taylor's
Reynolds number is around 200. We consider particles much heavier than the
carrier flow in the limit when the Stokes drag force dominates their dynamical
evolution. We discuss both the transient and the stationary regimes. In the
transient regime, we study the growt of inhomogeneities in the particle spatial
distribution driven by the preferential concentration out of intense vortex
filaments. In the stationary regime, we study the acceleration fluctuations as
a function of the Stokes number in the range [0.16:3.3]. We also compare our
results with those of pure fluid tracers (St=0) and we find a critical behavior
of inertia for small Stokes values. Starting from the pure monodisperse
statistics we also characterize polydisperse suspensions with a given mean
Stokes.Comment: 13 pages, 10 figures, 2 table
- …
