32,843 research outputs found

    The Surface Tension of Quark Matter in a Geometrical Approach

    Full text link
    The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during the formation of compact stellar objects, because it determines the nucleation rate and the associated critical size. However, this quantity is not well known and the theoretical estimates fall within a wide range, γ05300MeV/fm2\gamma_0 \approx 5-300 MeV/fm^2. We show here that once the equation of state is available one may use a geometrical approach to obtain a numerical value for the surface tension that is consistent with the model approximations adopted. We illustrate this method within the two-flavor linear \sigma model and the Nambu--Jona-Lasinio model with two and three flavors. Treating these models in the mean-field approximation, we find γ0730MeV/fm2\gamma_0 \approx 7-30 MeV/fm^2. Such a relatively small surface tension would favor the formation of quark stars and may thus have significant astrophysical implications. We also investigate how the surface tension decreases towards zero as the temperature is raised from zero to its critical value

    Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas

    Get PDF
    We discuss unusual aspects of symmetry that can happen due to entropic effects in the context of multi-scalar field theories at finite temperature. We present their consequences, in special, for the case of nonrelativistic models of hard core spheres. We show that for nonrelativistic models phenomena like inverse symmetry breaking and symmetry non-restoration cannot take place, but a reentrant phase at high temperatures is shown to be possible for some region of parameters. We then develop a model of interest in studies of Bose-Einstein condensation in dilute atomic gases and discuss about its phase transition patterns. In this application to a Bose-Einstein condensation model, however, no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O. Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One reference was update

    Scalar Perturbations in Scalar Field Quantum Cosmology

    Full text link
    In this paper it is shown how to obtain the simplest equations for the Mukhanov-Sasaki variables describing quantum linear scalar perturbations in the case of scalar fields without potential term. This was done through the implementation of canonical transformations at the classical level, and unitary transformations at the quantum level, without ever using any classical background equation, and it completes the simplification initiated in investigations by Langlois \cite{langlois}, and Pinho and Pinto-Neto \cite{emanuel2} for this case. These equations were then used to calculate the spectrum index nsn_s of quantum scalar perturbations of a non-singular inflationary quantum background model, which starts at infinity past from flat space-time with Planckian size spacelike hypersurfaces, and inflates due to a quantum cosmological effect, until it makes an analytical graceful exit from this inflationary epoch to a decelerated classical stiff matter expansion phase. The result is ns=3n_s=3, incompatible with observations.Comment: 10 pages, 2 figures, accepted version to Physical Review D 7

    Renormalization Group Optimized Perturbation Theory at Finite Temperatures

    Full text link
    A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar λϕ4 \lambda\phi^4 field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-NN results of the O(N)O(N) model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard thermal loop perturbation theory. The latter approaches exhibit a sensibly degrading scale dependence at higher orders, which we identify as a consequence of missing RG invariance. In contrast RGOPT gives a considerably reduced scale dependence at two-loop level, even for relatively large coupling values λ/24O(1)\sqrt{\lambda/24}\sim {\cal O}(1), making results much more stable as compared with standard perturbation theory, with expected similar properties for thermal QCD.Comment: 30 pages, 9 figures. v2: added remarks on foreseen QCD applications, accepted in Phys. Rev.
    corecore