3,243 research outputs found

    Single Photon Source Using Laser Pulses and Two-Photon Absorption

    Full text link
    We have previously shown that two-photon absorption (TPA) and the quantum Zeno effect can be used to make deterministic quantum logic devices from an otherwise linear optical system. Here we show that this type of quantum Zeno gate can be used with additional two-photon absorbing media and weak laser pulses to make a heralded single photon source. A source of this kind is expected to have a number of practical advantages that make it well suited for large scale quantum information processing applications

    Optically enhanced production of metastable xenon

    Full text link
    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.Comment: 3 pages, 3 figure

    Probabilistic Quantum Encoder for Single-Photon Qubits

    Full text link
    We describe an experiment in which a physical qubit represented by the polarization state of a single-photon was probabilistically encoded in the logical state of two photons. The experiment relied on linear optics, post-selection, and three-photon interference effects produced by a parametric down-conversion photon pair and a weak coherent state. An interesting consequence of the encoding operation was the ability to observe entangled three-photon Greenberger-Horne-Zeilinger states.Comment: 4 pages, 4 figures; submitted to Phys. Rev.

    Experimental Demonstration of a Quantum Circuit using Linear Optics Gates

    Full text link
    One of the main advantages of an optical approach to quantum computing is the fact that optical fibers can be used to connect the logic and memory devices to form useful circuits, in analogy with the wires of a conventional computer. Here we describe an experimental demonstration of a simple quantum circuit of that kind in which two probabilistic exclusive-OR (XOR) logic gates were combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio

    Proceedings of the Large Deployable Reflector Science and Technology Workshop. Volume 1: Executive Summary

    Get PDF
    A large ambient temperature, for infrared submillimeter telescope in space was discussed. The results of the scientific and technical activities were summarized. The scientific effort consisted of reviewing the science rationale for the Large Deployable Reflector (LDR) and arriving at a concensus set of scientific requirements. The telescope requirements were then compared to the current and anticipated state of the various technologies involved, and the technological shortfalls identified

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure
    corecore