7,900 research outputs found
Recommended from our members
From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress
Introduction: From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. Methods: This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981–2010). We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Results: Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Conclusions: Breakthroughs in biomedical science did associate with the number and types of HIV/AIDS bills introduced in Congress, but that relationship did not extend to the passage of laws or to hearings. When science matters, it cannot be separated from political considerations. An important implication of our work has been the depoliticizing role that science can play. Scientific breakthroughs helped to transform HIV/AIDS policy from a niche of liberal Democrats into bipartisan support for the global fight against the disease
Iodine monoxide in the Antarctic snowpack
Recent ground-based and space borne observations suggest the presence of significant amounts of iodine monoxide in the boundary layer of Antarctica, which are expected to have an impact on the ozone budget and might contribute to the formation of new airborne particles. So far, the source of these iodine radicals has been unknown. This paper presents long-term measurements of iodine monoxide at the German Antarctic research station Neumayer, which indicate that high IO concentrations in the order of 50 ppb are present in the snow interstitial air. The measurements have been performed using multi-axis differential optical absorption spectroscopy (MAX-DOAS). Using a coupled atmosphere snowpack radiative transfer model, the comparison of the signals observed from scattered skylight and from light reflected by the snowpack yields several ppb of iodine monoxide in the upper layers of the sunlit snowpack throughout the year. Snow pit samples from Neumayer Station contain up to 700 ng/l of total iodine, representing a sufficient reservoir for these extraordinarily high IO concentrations
Determination of activation volumes of reversal in perpendicular media
We discuss a method for the determination of activation volumes of reversal in perpendicular media. This method does not require correction for the self-demagnetizing field normally associated with these media. This is achieved by performing time dependence measurements at a constant level of magnetization. From the difference in time taken for the magnetization to decay to a fixed value at two fields-separated by a small increment DeltaH, the activation volume can be determined. We report data for both CoCrPt alloy films and a multilayer film, typical of those materials under consideration for use as perpendicular media. We find activation volumes that are consistent with the hysteresis curves of the materials. The activation volume scales qualitatively with the exchange coupling. The alloy films have significantly lower activation volumes, implying that they would be capable of supporting a higher data density
Holographic and ultrasonic detection of bond flaws in aluminum panels reinforced with boron-epoxy
An experimental investigation was made of the application of holographic interferometry to the nondestructive detection of unbonded areas (flaws) in bonded panels. Flaw detection results were compared with results obtained with an ultrasonic flaw detector. Holography, with panel deformation accomplished by a reduction in ambient pressure, is less sensitive for flaws beneath 5 and 10 plies of boron-epoxy than the ultrasonic method, though it does have its operational advantages. A process for the manufacture of bonded panels which incorporate known unbonded areas was also developed. The unbonded areas were formed without the use of foreign materials, which makes the method suitable for the construction of reference standards for bonded panels whenever needed for the proper setup of ultrasonic flaw-detection instruments
Active Sampling-based Binary Verification of Dynamical Systems
Nonlinear, adaptive, or otherwise complex control techniques are increasingly
relied upon to ensure the safety of systems operating in uncertain
environments. However, the nonlinearity of the resulting closed-loop system
complicates verification that the system does in fact satisfy those
requirements at all possible operating conditions. While analytical proof-based
techniques and finite abstractions can be used to provably verify the
closed-loop system's response at different operating conditions, they often
produce conservative approximations due to restrictive assumptions and are
difficult to construct in many applications. In contrast, popular statistical
verification techniques relax the restrictions and instead rely upon
simulations to construct statistical or probabilistic guarantees. This work
presents a data-driven statistical verification procedure that instead
constructs statistical learning models from simulated training data to separate
the set of possible perturbations into "safe" and "unsafe" subsets. Binary
evaluations of closed-loop system requirement satisfaction at various
realizations of the uncertainties are obtained through temporal logic
robustness metrics, which are then used to construct predictive models of
requirement satisfaction over the full set of possible uncertainties. As the
accuracy of these predictive statistical models is inherently coupled to the
quality of the training data, an active learning algorithm selects additional
sample points in order to maximize the expected change in the data-driven model
and thus, indirectly, minimize the prediction error. Various case studies
demonstrate the closed-loop verification procedure and highlight improvements
in prediction error over both existing analytical and statistical verification
techniques.Comment: 23 page
Python I, II, and III CMB Anisotropy Measurement Constraints on Open and Flat-Lambda CDM Cosmogonies
We use Python I, II, and III cosmic microwave background anisotropy data to
constrain cosmogonies. We account for the Python beamwidth and calibration
uncertainties. We consider open and spatially-flat-Lambda cold dark matter
cosmogonies, with nonrelativistic-mass density parameter Omega_0 in the range
0.1--1, baryonic-mass density parameter Omega_B in the range (0.005--0.029)
h^{-2}, and age of the universe t_0 in the range (10--20) Gyr. Marginalizing
over all parameters but Omega_0, the combined Python data favors an open
(spatially-flat-Lambda) model with Omega_0 simeq 0.2 (0.1). At the 2 sigma
confidence level model normalizations deduced from the combined Python data are
mostly consistent with those drawn from the DMR, UCSB South Pole 1994, ARGO,
MAX 4 and 5, White Dish, and SuZIE data sets.Comment: 20 pages, 7 figures, accepted by Ap
The cost of reducing utility S02 emissions : not as low as you might think
A common assertion in public policy discussions is that the cost of achieving the SO2 emissions reductions under the acid rain provisions of the Clean Air Act ("Title IV") has been only one-tenth or less of what Title IV was originally expected to cost. Initial cost estimates are cited in the range of 2000 per ton of SO2 reduction and contrasted to SO2 allowance prices of about 1000 per ton. (2) Initial cost estimates for a fully-implemented Phase II cap ranged from 200 per ton. This is within the range that was initially projected. Today's most up-to-date estimates for Phase II (future) average costs are about 220 per ton. This is at the low end of the initial range of estimates. Allowance prices have been much lower, but we explain how they are consistent with actual average costs of $200 per ton.Partially supported by John Kinsman and Edison Electric Institute
Predictors and immunological correlates of sublethal mercury exposure in vampire bats
Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibility remains unknown for bats, which appear immunologically distinct from other mammals and are reservoir hosts of many pathogens of importance to human and animal health. We here quantify total Hg (THg) in hair collected from common vampire bats (Desmodus rotundus), which feed on blood and are the main reservoir hosts of rabies virus in Latin America. We examine how diet, sampling site and year, and bat demography influence THg and test the consequences of this variation for eight immune measures. In two populations from Belize, THg concentrations in bats were best explained by an interaction between long-term diet inferred from stable isotopes and year. Bats that foraged more consistently on domestic animals exhibited higher THg. However, relationships between diet and THg were evident only in 2015 but not in 2014, which could reflect recent environmental perturbations associated with agriculture. THg concentrations were low relative to values previously observed in other bat species but still correlated with bat immunity. Bats with higher THg had more neutrophils, weaker bacterial killing ability and impaired innate immunity. These patterns suggest that temporal variation in Hg exposure may impair bat innate immunity and increase susceptibility to pathogens such as bacteria. Unexpected associations between low-level Hg exposure and immune function underscore the need to better understand the environmental sources of Hg exposure in bats and the consequences for bat immunity and susceptibility
- …
