1,304 research outputs found
Understanding the relationships between the physical environment and physical activity in older adults: a systematic review of qualitative studies
published_or_final_versio
Mojave remote sensing field experiment
The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars
Universal critical temperature for Kosterlitz-Thouless transitions in bilayer quantum magnets
Recent experiments show that double layer quantum Hall systems may have a
ground state with canted antiferromagnetic order. In the experimentally
accessible vicinity of a quantum critical point, the order vanishes at a
temperature T_{KT} = \kappa H, where H is the magnetic field and \kappa is a
universal number determined by the interactions and Berry phases of the thermal
excitations. We present quantum Monte Carlo simulations on a model spin system
which support the universality of \kappa and determine its numerical value.
This allows experimental tests of an intrinsically quantum-mechanical universal
quantity, which is not also a property of a higher dimensional classical
critical point.Comment: 5 pages, 4 figure
The most plausible explanation of the cyclical period changes in close binaries: the case of the RS CVn-type binary WW Dra
We searched the orbital period changes in 182 EA-type (including the 101
Algol systems used by \cite{hal89}), 43 EB-type and 53 EW-type binaries with
known both the mass ratio and the spectral type of their secondary components.
We reproduced and improved the same diagram as Hall's (1989) according to the
new collected data. Our plots do not support the conclusion derived by
\cite{hal89} that all cases of cyclical period changes are restricted to
binaries having the secondary component with spectral types later than F5. The
presence of period changes also among stars with secondary component of early
type indicates that the magnetic activity is one cause, but not the only one,
for the period variation. It is discovered that cyclic period changes, likely
due to the presence of a third body are more frequent in EW-type binaries among
close binaries. Therefore, the most plausible explanation of the cyclical
period changes is the LTTE via the presence of a third body. By using the
century-long historical record of the times of light minimum, we analyzed the
cyclical period change in the Algol binary WW Dra. It is found that the orbital
period of the binary shows a cyclic variation
with an amplitude of . The cyclic oscillation
can be attributed to the LTTE via a third body with a mass no less than . However, no spectral lines of the third body were discovered
indicating that it may be a candidate black hole. The third body is orbiting
the binary at a distance shorter than 14.4 AU and it may play an important role
in the evolution of this system.Comment: 9 pages, 5 figures, published by MNRA
Spelling-to-sound correspondences affect acronym recognition processes
A large body of research has examined the factors which affect the speed with which words are recognised in lexical decision tasks. Nothing has yet been reported concerning the important factors in differentiating acronyms (e.g. BBC, HIV, NASA) from non-words. It appears that this task poses little problem for skilled readers, in spite of the fact that acronyms have uncommon, even illegal, spellings in English. We used regression techniques to examine the role of a number of lexical and non-lexical variables known to be important in word processing in relation to lexical decision for acronym targets. Findings indicated that acronym recognition is affected by age of acquisition and imageability. In a departure from findings in word recognition,acronym recognition was not affected by frequency. Lexical decision responses for acronyms were also affected by the relationship between spelling and sound - a pattern not usually observed in word recognition. We argue that the complexity of acronym recognition means that the process draws phonological information in addition to
semantics
Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies
Detailed stratigraphy and bed thickness of the Mars north and south polar layered deposits
The Mars polar layered deposits (PLD) likely hold an extensive record of recent climate during a period of high-amplitude orbit and obliquity cycles. Previous work has detected limited evidence for orbital signatures within PLD stratigraphy, but data from the High Resolution Imaging Science Experiment (HiRISE) permit renewed analysis of PLD stratigraphy at sub-meter scale. Topography derived from HiRISE images using stereogrammetry resolves beds previously detectable only as alternating light and dark bands in visible images. We utilize these data to measure the thickness of individual beds within the PLD, corrected for non-horizontal bed orientation. Stratigraphic columns and bed thickness profiles are presented for two sites within the NPLD, and show several sets of finely bedded units 1–2 m thick; isolated marker beds 3–4 m thick; and undifferentiated sections. Bed thickness measurements for three sites within the SPLD exhibit only one bed type based on albedo and morphology, and bed thicknesses have a larger mean and variance compared to measurements for the NPLD. Power spectra of brightness and slope derived along the measured stratigraphic sections confirm the regularity of NPLD fine bed thickness, and the lack of a dominant SPLD bed thickness. The regularity of fine bed thickness of the NPLD is consistent with quasiperiodic bed formation, albeit with unknown temporal period; the SPLD thickness measurements show no such regularity
Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates
Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs
Must analysis of meaning follow analysis of form? A time course analysis
Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34–100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency
- …
