122 research outputs found
Synchronization of Excitatory Neurons with Strongly Heterogeneous Phase Responses
In many real-world oscillator systems, the phase response curves are highly
heterogeneous. However, dynamics of heterogeneous oscillator networks has not
been seriously addressed. We propose a theoretical framework to analyze such a
system by dealing explicitly with the heterogeneous phase response curves. We
develop a novel method to solve the self-consistent equations for order
parameters by using formal complex-valued phase variables, and apply our theory
to networks of in vitro cortical neurons. We find a novel state transition that
is not observed in previous oscillator network models.Comment: 4 pages, 3 figure
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
Dragon-kings: mechanisms, statistical methods and empirical evidence
This introductory article presents the special Discussion and Debate volume
"From black swans to dragon-kings, is there life beyond power laws?" published
in Eur. Phys. J. Special Topics in May 2012. We summarize and put in
perspective the contributions into three main themes: (i) mechanisms for
dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii)
empirical evidence in a large variety of natural and social systems. Overall,
we are pleased to witness significant advances both in the introduction and
clarification of underlying mechanisms and in the development of novel
efficient tests that demonstrate clear evidence for the presence of
dragon-kings in many systems. However, this positive view should be balanced by
the fact that this remains a very delicate and difficult field, if only due to
the scarcity of data as well as the extraordinary important implications with
respect to hazard assessment, risk control and predictability.Comment: 20 page
Evidence for the transmission of Salmonella from reptiles to children in Germany, July 2010 to October 2011
Binary file ES_Abstracts_Final_ECDC.txt matches
</jats:p
Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches
Cascading activity is commonly found in complex systems with directed
interactions such as metabolic networks, neuronal networks, or disease spreading
in social networks. Substantial insight into a system's organization
can be obtained by reconstructing the underlying functional network architecture
from the observed activity cascades. Here we focus on Bayesian approaches and
reduce their computational demands by introducing the Iterative Bayesian (IB)
and Posterior Weighted Averaging (PWA) methods. We introduce a special case of
PWA, cast in nonparametric form, which we call the normalized count (NC)
algorithm. NC efficiently reconstructs random and small-world functional network
topologies and architectures from subcritical, critical, and supercritical
cascading dynamics and yields significant improvements over commonly used
correlation methods. With experimental data, NC identified a functional and
structural small-world topology and its corresponding traffic in cortical
networks with neuronal avalanche dynamics
Coherence Potentials Encode Simple Human Sensorimotor Behavior
Recent work has shown that large amplitude negative periods in the local field potential (nLFPs) are able to spread in saltatory manner across large distances in the cortex without distortion in their temporal structure forming ‘coherence potentials’. Here we analysed subdural electrocorticographic (ECoG) signals recorded at 59 sites in the sensorimotor cortex in the left hemisphere of a human subject performing a simple visuomotor task (fist clenching and foot dorsiflexion) to understand how coherence potentials arising in the recordings relate to sensorimotor behavior. In all behaviors we found a particular coherence potential (i.e. a cascade of a particular nLFP wave pattern) arose consistently across all trials with temporal specificity. During contrateral fist clenching, but not the foot dorsiflexion or ipsilateral fist clenching, the coherence potential most frequently originated in the hand representation area in the somatosensory cortex during the anticipation and planning periods of the trial, moving to other regions during the actual motor behavior. While these ‘expert’ sites participated more consistently, other sites participated only a small fraction of the time. Furthermore, the timing of the coherence potential at the hand representation area after onset of the cue predicted the timing of motor behavior. We present the hypothesis that coherence potentials encode information relevant for behavior and are generated by the ‘expert’ sites that subsequently broadcast to other sites as a means of ‘sharing knowledge’
Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins
A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone
We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies
Self-Organized Criticality in Developing Neuronal Networks
Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro
Coherence Potentials: Loss-Less, All-or-None Network Events in the Cortex
Transient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular associations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks
- …
