1,837 research outputs found
Systemic risk in dynamical networks with stochastic failure criterion
Complex non-linear interactions between banks and assets we model by two
time-dependent Erd\H{o}s Renyi network models where each node, representing
bank, can invest either to a single asset (model I) or multiple assets (model
II). We use dynamical network approach to evaluate the collective financial
failure---systemic risk---quantified by the fraction of active nodes. The
systemic risk can be calculated over any future time period, divided on
sub-periods, where within each sub-period banks may contiguously fail due to
links to either (i) assets or (ii) other banks, controlled by two parameters,
probability of internal failure and threshold ("solvency" parameter).
The systemic risk non-linearly increases with and decreases with average
network degree faster when all assets are equally distributed across banks than
if assets are randomly distributed. The more inactive banks each bank can
sustain (smaller ), the smaller the systemic risk---for some values
in I we report a discontinuity in systemic risk. When contiguous spreading
becomes stochastic (ii) controlled by probability ---a condition for the
bank to be solvent (active) is stochastic---the systemic risk decreases with
decreasing . We analyse asset allocation for the U.S. banks.Comment: 7 pages, 7 figure
Bankruptcy risk model and empirical tests
We analyze the size dependence and temporal stability of firm bankruptcy risk
in the US economy by applying Zipf scaling techniques. We focus on a single
risk factor-the debt-to-asset ratio R-in order to study the stability of the
Zipf distribution of R over time. We find that the Zipf exponent increases
during market crashes, implying that firms go bankrupt with larger values of R.
Based on the Zipf analysis, we employ Bayes's theorem and relate the
conditional probability that a bankrupt firm has a ratio R with the conditional
probability of bankruptcy for a firm with a given R value. For 2,737 bankrupt
firms, we demonstrate size dependence in assets change during the bankruptcy
proceedings. Prepetition firm assets and petition firm assets follow Zipf
distributions but with different exponents, meaning that firms with smaller
assets adjust their assets more than firms with larger assets during the
bankruptcy process. We compare bankrupt firms with nonbankrupt firms by
analyzing the assets and liabilities of two large subsets of the US economy:
2,545 Nasdaq members and 1,680 New York Stock Exchange (NYSE) members. We find
that both assets and liabilities follow a Pareto distribution. The finding is
not a trivial consequence of the Zipf scaling relationship of firm size
quantified by employees-although the market capitalization of Nasdaq stocks
follows a Pareto distribution, the same distribution does not describe NYSE
stocks. We propose a coupled Simon model that simultaneously evolves both
assets and debt with the possibility of bankruptcy, and we also consider the
possibility of firm mergers.Comment: 8 pages, 8 figure
A study of photoexcited carrier relaxation in YBa_2Cu_3O_(7-d) by picosecond resonant Raman spectroscopy
The temperature dependence of the energy relaxation of photoexcited (PE)
carriers is used as a probe of the electronic structure of YBa_2Cu_3O_(7-d) in
the insulating d~0.8 and metallic d~0.1 phases. The energy relaxation rate to
phonons is obtained by measuring the non-equilibrium phonon occupation number,
n_neq, with pulsed Raman Stokes/anti-Stokes spectroscopy using 1.5 and 70 ps
long laser pulses. We can distinguish between relaxation via extended band
states and localized states, since theoretically in the former, the relaxation
is expected to be virtually T-independent, while in the latter it is strongly
T-dependent. From the experiment - which shows strong temperature dependence of
n_neq - we deduce that at least part of the PE carrier relaxation proceeds via
hopping between localized states and we propose a simple theoretical model of
the relaxation process. In addition, we compare the coupling of different
vibrational modes to the carriers to find that the apical O vibrational mode is
significantly more involved in the energy relaxation process that the in-plane
340 cm^(-1}) mode. This implies that the localized states are mainly (but not
entirely) coupled to out-of plane vibrations.Comment: 9 pages, 6 figures (ps
Random matrix approach in search for weak signals immersed in background noise
We present new, original and alternative method for searching signals coded
in noisy data. The method is based on the properties of random matrix
eigenvalue spectra. First, we describe general ideas and support them with
results of numerical simulations for basic periodic signals immersed in
artificial stochastic noise. Then, the main effort is put to examine the
strength of a new method in investigation of data content taken from the real
astrophysical NAUTILUS detector, searching for the presence of gravitational
waves. Our method discovers some previously unknown problems with data
aggregation in this experiment. We provide also the results of new method
applied to the entire respond signal from ground based detectors in future
experimental activities with reduced background noise level. We indicate good
performance of our method what makes it a positive predictor for further
applications in many areas.Comment: 15 pages, 16 figure
- …
