3,466 research outputs found
Reliability Testing of AlGaN/GaN HEMTs Under Multiple Stressors
We performed an experiment on AlGaN/GaN HEMTs with high voltage and high power as stressors. We found that devices tested under high power generally degraded more than those tested under high voltage. In particular, the high-voltage-tested devices did not degrade significantly as suggested by some papers in the literature. The same papers in the literature also suggest that high voltages cause cracks and pits. However, the high-voltage-tested devices in this study do not exhibit cracks or pits in TEM images, while the high-power-tested devices exhibit pits
The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes
Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach
An extension to the classical FPV model is developed for transcritical
real-fluid combustion simulations in the context of finite volume, fully
compressible, explicit solvers. A double-flux model is developed for
transcritical flows to eliminate the spurious pressure oscillations. A hybrid
scheme with entropy-stable flux correction is formulated to robustly represent
large density ratios. The thermodynamics for ideal-gas values is modeled by a
linearized specific heat ratio model. Parameters needed for the cubic EoS are
pre-tabulated for the evaluation of departure functions and a quadratic
expression is used to recover the attraction parameter. The novelty of the
proposed approach lies in the ability to account for pressure and temperature
variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases
are performed to demonstrate the capability of the proposed approach in
multidimensional simulations. The proposed combustion model and numerical
schemes are directly applicable for LES simulations of real applications under
transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T
Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions
A numerical framework implemented in the open-source tool OpenFOAM is
presented in this work combining a hybrid, pressure-based solver with a
vapor-liquid equilibrium model based on the cubic equation of state. This
framework is used in the present work to investigate underexpanded jets at
engine-relevant conditions where real-gas effects and mixture induced phase
separation are probable to occur. A thorough validation and discussion of the
applied vapor-liquid equilibrium model is conducted by means of general
thermodynamic relations and measurement data available in the literature.
Engine-relevant simulation cases for two different fuels were defined. Analyses
of the flow field show that the used fuel has a first order effect on the
occurrence of phase separation. In the case of phase separation two different
effects could be revealed causing the single-phase instability, namely the
strong expansion and the mixing of the fuel with the chamber gas. A comparison
of single-phase and two-phase jets disclosed that the phase separation leads to
a completely different penetration depth in contrast to single-phase injection
and therefore commonly used analytical approaches fail to predict the
penetration depth.Comment: Preprint submitted to AIAA Scitech 2018, Kissimmee, Florid
From Orbit to Ocean—Fixing Southeast Asia’s Remote-Sensing Blind Spots
Improving maritime domain awareness (MDA) in Southeast Asia is critical not only for regional states but for the national-security interests of the United States. MDA in the coming decades will be dominated by cheaper, more-efficient remote-sensing tools, and the United States and other outside parties should shift toward introducing partners to the booming private-sector offerings in remote sensing
P-Wave Charmonium Production in B-Meson Decays
We calculate the decay rates of mesons into P-wave charmonium states
using new factorization formulas that are valid to leading order in the
relative velocity of the charmed quark and antiquark and to all orders in the
running coupling constant of QCD. We express the production rates for all four
P states in terms of two nonperturbative parameters, the derivative of the
wavefunction at the origin and another parameter related to the probability for
a charmed-quark-antiquark pair in a color-octet S-wave state to radiate a soft
gluon and form a P-wave bound state. Using existing data on meson decays
into to estimate the color-octet parameter, we find that the
color-octet mechanism may account for a significant fraction of the
production rate and that mesons should decay into at a similar
rate.Comment: 14 page
Bovine oocytes in secondary follicles grow and acquire meiotic competence in severe combined immunodeficient mice
A rigorous methodology is developed
that addresses numerical and
statistical issues when developing group contribution (GC) based property
models such as regression methods, optimization algorithms, performance
statistics, outlier treatment, parameter identifiability, and uncertainty
of the prediction. The methodology is evaluated through development
of a GC method for the prediction of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) for pure components. The results showed that robust regression
lead to best performance statistics for parameter estimation. The
bootstrap method is found to be a valid alternative to calculate parameter
estimation errors when underlying distribution of residuals is unknown.
Many parameters (first, second, third order group contributions) are
found unidentifiable from the typically available data, with large
estimation error bounds and significant correlation. Due to this poor
parameter identifiability issues, reporting of the 95% confidence
intervals of the predicted property values should be mandatory as
opposed to reporting only single value prediction, currently the norm
in literature. Moreover, inclusion of higher order groups (additional
parameters) does not always lead to improved prediction accuracy for
the GC-models; in some cases, it may even increase the prediction
error (hence worse prediction accuracy). However, additional parameters
do not affect calculated 95% confidence interval. Last but not least,
the newly developed GC model of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) shows predictions of great accuracy and quality (the most data
falling within the 95% confidence intervals) and provides additional
information on the uncertainty of each prediction compared to other
Δ<i>H</i><sub>c</sub><sup>o</sup> models reported in literature
- …
