1,182 research outputs found
Criticality in Trapped Atomic Systems
We discuss generic limits posed by the trap in atomic systems on the accurate
determination of critical parameters for second-order phase transitions, from
which we deduce optimal protocols to extract them. We show that under current
experimental conditions the in-situ density profiles are barely suitable for an
accurate study of critical points in the strongly correlated regime. Contrary
to recent claims, the proper analysis of time-of-fight images yields critical
parameters accurately.Comment: 4 pages, 3 figures; added reference
Absence of a Direct Superfluid to Mott Insulator Transition in Disordered Bose Systems
We prove the absence of a direct quantum phase transition between a
superfluid and a Mott insulator in a bosonic system with generic, bounded
disorder. We also prove compressibility of the system on the
superfluid--insulator critical line and in its neighborhood. These conclusions
follow from a general {\it theorem of inclusions} which states that for any
transition in a disordered system one can always find rare regions of the
competing phase on either side of the transition line. Quantum Monte Carlo
simulations for the disordered Bose-Hubbard model show an even stronger result,
important for the nature of the Mott insulator to Bose glass phase transition:
The critical disorder bound, , corresponding to the onset of
disorder-induced superfluidity, satisfies the relation , with the half-width of the Mott gap in the pure system.Comment: 4 pages, 3 figures; replaced with resubmitted versio
Supersolid phase with cold polar molecules on a triangular lattice
We study a system of heteronuclear molecules on a triangular lattice and
analyze the potential of this system for the experimental realization of a
supersolid phase. The ground state phase diagram contains superfluid, solid and
supersolid phases. At finite temperatures and strong interactions there is an
additional emulsion region, in contrast to similar models with short-range
interactions. We derive the maximal critical temperature and the
corresponding entropy for supersolidity and find feasible
experimental conditions for its realization.Comment: 4 pages, 4 figure
Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification
Persil Çetinkol, Özgül (Dogus author)Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C 6C 1 lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C 6C 1 monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis
Diagrammatic Monte Carlo for Correlated Fermions
We show that Monte Carlo sampling of the Feynman diagrammatic series (DiagMC)
can be used for tackling hard fermionic quantum many-body problems in the
thermodynamic limit by presenting accurate results for the repulsive Hubbard
model in the correlated Fermi liquid regime. Sampling Feynman's diagrammatic
series for the single-particle self-energy we can study moderate values of the
on-site repulsion () and temperatures down to . We
compare our results with high temperature series expansion and with single-site
and cluster dynamical mean-field theory.Comment: 4 pages, 5 figures, stylistic change
Thermometry with spin-dependent lattices
We propose a method for measuring the temperature of strongly correlated
phases of ultracold atom gases confined in spin-dependent optical lattices. In
this technique, a small number of "impurity" atoms--trapped in a state that
does not experience the lattice potential--are in thermal contact with atoms
bound to the lattice. The impurity serves as a thermometer for the system
because its temperature can be straightforwardly measured using time-of-flight
expansion velocity. This technique may be useful for resolving many open
questions regarding thermalization in these isolated systems. We discuss the
theory behind this method and demonstrate proof-of-principle experiments,
including the first realization of a 3D spin-dependent lattice in the strongly
correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating
rates updated to include dipole fluctuation terms; Section added on the
limitations of the proposed method. To appear in New Journal of Physic
Luttinger Liquid in the Core of Screw Dislocation in Helium-4
On the basis of first-principle Monte Carlo simulations we find that the
screw dislocation along the hexagonal axis of an hcp He4 crystal features a
superfluid core. This is the first example of a regular quasi-one-dimensional
supersolid, and one of the cleanest cases of a regular Luttinger-liquid system.
In contrast, the same type of screw dislocation in solid Hydrogen is
insulating.Comment: replaced with revised versio
- …
