4,717 research outputs found
Four-colour photometry of eclipsing binaries. XLI uvby light curves for AD Bootis, HW Canis Majoris, SW Canis Majoris, V636 Centauri, VZ Hydrae, and WZ Ophiuchi
CONTEXT: Accurate mass, radius, and abundance determinations from binaries
provide important information on stellar evolution, fundamental to central
fields in modern astrophysics and cosmology.
AIMS: Within the long-term Copenhagen Binary Project, we aim to obtain
high-quality light curves and standard photometry for double-lined detached
eclipsing binaries with late A, F, and G type main-sequence components, needed
for the determination of accurate absolute dimensions and abundances, and for
detailed comparisons with results from recent stellar evolutionary models.
METHODS: Between March 1985 and July 2007, we carried out photometric
observations of AD Boo, HW CMA, SW CMa, V636 Cen, VZ Hya, and WZ Oph at the
Str"omgren Automatic Telescope at ESO, La Silla.
RESULTS: We obtained complete uvby light curves, ephemerides, and standard
uvby\beta indices for all six systems.For V636 Cen and HW CMa, we present the
first modern light curves, whereas for AD Boo, SW CMa, VZ Hya, and WZ Oph, they
are both more accurate and more complete than earlier data. Due to a high
orbital eccentricity (e = 0.50), combined with a low orbital inclination (i =
84.7), only one eclipse, close to periastron, occurs for HW CMa. For the two
other eccentric systems, V636 Cen (e = 0.134) and SW CMa (e = 0.316), apsidal
motion has been detected with periods of 5270 +/- 335 and 14900 +/- 3600 years,
respectively.Comment: Only change is: Bottom lines (hopefully) not truncated anymore.
Accepted for publication in Astonomy & Astrophysic
Absolute dimensions of eclipsing binaries. XXVI, Setting a new standard : masses, radii, and abundances for the F-type systems AD Bootis, VZ Hydrae, and WZ Ophiuchi
Context. Accurate mass, radius, and abundance determinations from binaries provide important information on stellar evolution, fundamental to central fields in modern astrophysics and cosmology.
Aims. We aim to determine absolute dimensions and abundances for the three F-type main-sequence detached eclipsing binaries ADBoo, VZHya, and WZOph and to perform a detailed comparison with results from recent stellar evolutionary models.
Methods. uvby light curves and uvbyβ standard photometry were obtained with the Strömgren Automatic Telescope at ESO, La Silla, radial velocity observations at CfA facilities, and supplementary high-resolution spectra with ESO’s FEROS spectrograph. State-ofthe-art methods were applied for the analyses: the EBOP andWilson-Devinney binary models, two-dimensional cross-correlation and
disentangling, and the VWA abundance analysis tool.
Results. Masses and radii that are precise to 0.5–0.7% and 0.4–0.9%, respectively, have been established for the components, which span the ranges of 1.1 to 1.4 M and 1.1 to 1.6 R. The [Fe/H] abundances are from –0.27 to +0.10, with uncertainties between 0.07 and 0.15 dex. We find indications of a slight α-element overabundance of [α/Fe] ∼ +0.1 for WZOph. The secondary component of ADBoo and both components of WZOph appear to be slightly active. Yale-Yonsai and Victoria-Regina evolutionary models fit the
components of ADBoo and VZHya almost equally well, assuming coeval formation, at ages of about 1.75/1.50 Gyr (ADBoo) and
1.25/1.00 Gyr (VZHya). BaSTI models, however, predict somewhat different ages for the primary and secondary components. For WZOph, the models from all three grids are significantly hotter than observed. A low He content, decreased envelope convection coupled with surface activity, and/or higher interstellar absorption would remove the discrepancy, but its cause has not been definitively identified.
Conclusions. We have demonstrated the power of testing and comparing recent stellar evolutionary models using eclipsing binaries, provided their abundances are known. The strongest limitations and challenges are set by Teff and interstellar absorption determinations, and by their effects on and correlation with abundance results
Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot
We present a detailed study of the F-type detached eclipsing binary BK Peg,
based on new photometric and spectroscopic observations. The two components,
which have evolved to the upper half of the main-sequence band, are quite
different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun)
and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day
period orbit of BK Peg is slightly eccentric (e = 0.053). The measured
rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary)
km/s. For the secondary component this corresponds to (pseudo)synchronous
rotation, whereas the primary component seems to rotate at a slightly lower
rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar
abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina
evolutionary models for the observed metal abundance reproduce BK Peg at ages
of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the
more massive primary component than for the secondary. We find the same age
trend for three other upper main-sequence systems in a sample of well studied
eclipsing binaries with components in the 1.15-1.70 Msun range, where
convective core overshoot is gradually ramped up in the models. We also find
that the Yonsei-Yale models systematically predict higher ages than the
Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have
determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We
propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing
binaries to fine-tune convective core overshoot, diffusion, and possibly other
ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic
Bayes and health care research.
Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism.
There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper.
Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers.
However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together.
</p
A perspective on the landscape problem
I discuss the historical roots of the landscape problem and propose criteria
for its successful resolution. This provides a perspective to evaluate the
possibility to solve it in several of the speculative cosmological scenarios
under study including eternal inflation, cosmological natural selection and
cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics
titled: Forty Years Of String Theory: Reflecting On the Foundations. 31
pages, no figure
Advancing Science with VGI: Reproducibility and Replicability of Recent Studies using VGI
In scientific research, reproducibility and replicability are requirements to ensure the advancement of our
body of knowledge.
T
his holds true also for VGI
-
related research and studies. However, the
characteristics
of VGI suggest particular difficulties in
ensuring
reproducibility and replicability
. In this
paper,
we aim to examine the current situation in VGI
-
related research
,
and identify strategies to ensure
realization of its full potential. To do so, we first
investigate
the different aspects of reprod
ucibility and
replicability
and their impact on
VGI
-
related research
. These impacts are different depending on the
objectives
of the study. Therefore
, we examine the
study
focus of VGI
-
related research to assess the
current body of research
and structure o
ur assessment
. Th
is work is
based
on a rigorous review of the
elements of reproducibility and a systematic mapping and analysis
of
58
papers on the use of VGI in the
crisis management field. Results of our investigation show that reproducibility issues related to data are
a
serious
concern
, while reproducibility issues related to analysis methods and processes face fewer
challenges. Howe
ver, since most studies still focus on
analyzing
the source data, reproducibility and
replicability are
still an unsolved problem
in VGI
-
related research. Therefore, we
show initiative
s
tackling
the problem, and
finally formulate strategies to improve the
situatio
Facts, Values and Quanta
Quantum mechanics is a fundamentally probabilistic theory (at least so far as
the empirical predictions are concerned). It follows that, if one wants to
properly understand quantum mechanics, it is essential to clearly understand
the meaning of probability statements. The interpretation of probability has
excited nearly as much philosophical controversy as the interpretation of
quantum mechanics. 20th century physicists have mostly adopted a frequentist
conception. In this paper it is argued that we ought, instead, to adopt a
logical or Bayesian conception. The paper includes a comparison of the orthodox
and Bayesian theories of statistical inference. It concludes with a few remarks
concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
On the anomaly of Balmer line profiles of A-type stars. Fundamental binary systems
In previous work, Gardiner et al. (1999) found evidence for a discrepancy
between the Teff obtained from Balmer lines with that from photometry and
fundamental values for A-type stars. An investigation into this anomaly is
presented using Balmer line profiles of stars in binary system with fundamental
values of both Teff and log g. A revision of the fundamental parameters for
binary systems given by Smalley & Dworetsky (1995) is also presented. The Teff
obtained by fitting Halpha and Hbeta line profiles is compared to the
fundamental values and those obtained from uvby photometry. We find that the
discrepancy found by Gardiner et al. (1999) for stars in the range 7000 K <
Teff < 9000 K is no longer evident.Comment: 10 pages, 4 figures; Accepted by A&
Solutions for 10,000 Eclipsing Binaries in the Bulge Fields of OGLE II Using DEBiL
We have developed a fully-automated pipeline for systematically identifying
and analyzing eclipsing binaries within large datasets of light curves. The
pipeline is made up of multiple tiers which subject the light curves to
increasing levels of scrutiny. After each tier, light curves that did not
conform to a given criteria were filtered out of the pipeline, reducing the
load on the following, more computationally intensive tiers. As a central
component of the pipeline, we created the fully automated Detached Eclipsing
Binary Light curve fitter (DEBiL), which rapidly fits large numbers of light
curves to a simple model. Using the results of DEBiL, light curves of interest
can be flagged for follow-up analysis. As a test case, we analyzed the 218699
light curves within the bulge fields of the OGLE II survey and produced 10862
model fits. We point out a small number of extreme examples as well as
unexpected structure found in several of the population distributions. We
expect this approach to become increasingly important as light curve datasets
continue growing in both size and number.Comment: Accepted for publication in ApJ, 36 pages, 15 figures, 5 tables. See
http://cfa-www.harvard.edu/~jdevor/DEBiL.html for high-resolution figures and
further informatio
- …
