8,194 research outputs found

    Choosing Truth: The Influence of Function, Institutions, and Global Culture on the Establishment of Truth and Reconciliation Commissions

    Get PDF
    This study explores Truth and Reconciliation Commissions (TRCs) in post-conflict societies by testing three different theoretical explanations for their establishment. The first approach is grounded in functionalist theory in which the functional needs of the post-conflict society are seen as the most influential factor. The second approach emphasizes how institutional factors constrain the options available to post-conflict societies. The last approach argues that global culture determines whether or not a post-conflict society will establish a TRC. To determine which of these approaches is accurate I used qualitative comparative analysis to compare twenty different post-conflict societies on a number of variables. My study reveals that institutional factors are more influential than functionalist factors on a country’s decision to establish a TRC. Specifically, the need for power sharing proved especially influential in both political oppression and civil war conflicts. My research also shows that the effect of international third parties is not consistent; international third party involvement does not guarantee TRC establishment. This finding suggests a greater complexity in global culture than previously thought

    Neighbouring residue effects on the ^(15)N chemical shifts of some aliphatic dipeptides

    Get PDF
    The ^(15)N chemical shifts of a number of simple aliphatic dipeptides have been determined in a aqueous solution and while the amine nitrogen shift is independent of the nature of the neighbouring residue, the peptide nitrogen shift shows a marked dependence upon the nature of the adjacent amino-acid

    Scrutinizing and De-Biasing Intuitive Physics with Neural Stethoscopes

    Full text link
    Visually predicting the stability of block towers is a popular task in the domain of intuitive physics. While previous work focusses on prediction accuracy, a one-dimensional performance measure, we provide a broader analysis of the learned physical understanding of the final model and how the learning process can be guided. To this end, we introduce neural stethoscopes as a general purpose framework for quantifying the degree of importance of specific factors of influence in deep neural networks as well as for actively promoting and suppressing information as appropriate. In doing so, we unify concepts from multitask learning as well as training with auxiliary and adversarial losses. We apply neural stethoscopes to analyse the state-of-the-art neural network for stability prediction. We show that the baseline model is susceptible to being misled by incorrect visual cues. This leads to a performance breakdown to the level of random guessing when training on scenarios where visual cues are inversely correlated with stability. Using stethoscopes to promote meaningful feature extraction increases performance from 51% to 90% prediction accuracy. Conversely, training on an easy dataset where visual cues are positively correlated with stability, the baseline model learns a bias leading to poor performance on a harder dataset. Using an adversarial stethoscope, the network is successfully de-biased, leading to a performance increase from 66% to 88%

    The evolution and development of visual perspective taking

    Get PDF
    I outline three conceptions of seeing that a creature might possess: ‘the headlamp conception,’ which involves an understanding of the causal connections between gazing at an object, certain mental states, and behavior; ‘the stage lights conception,’ which involves an understanding of the selective nature of visual attention; and seeing-as. I argue that infants and various nonhumans possess the headlamp conception. There is also evidence that chimpanzees and 3-year-old children have some grasp of seeing-as. However, due to a dearth of studies, there is no evidence that infants or nonhumans possess the stage lights conception of seeing. I outline the kinds of experiments that are needed, and what we stand to learn about the evolution and development of perspective taking

    Deceptive body movements reverse spatial cueing in soccer

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge

    Monoclonal antibodies against human astrocytomas and their reactivity pattern

    Get PDF
    The establishment of hybridomas after fusion of X63-Ag8.653 mouse myeloma cells and splenocytes from mice hyperimmunized against human astrocytomas is presented. The animals were primed with 5 × 106 chemically modified uncultured or cultured glioma cells. Six weeks after the last immunization step an intrasplenal booster injection was administrated and 3 days later the spleen cells were prepared for fusion experiments. According to the specificity analysis of the generated antibodies 7 hybridoma products (MUC 7-22, MUC 8-22, MUC 10-22, MUC 11-22, MUC 14-22, MUC 15-22 and MUC 2-63) react with gliomas, neuroblastomas and melanomas as well as with embryonic and fetal cells but do not recognize non-neurogenic tumors. The selected monoclonal antibodies (McAbs) of IgG1 and IgG2a isotypes are not extensively characterized but these antibodies have been demonstrated to be reactive with a panel of glioma cell lines with varying patterns of antigen distribution. Using the McAbs described above and a series of cryosections of glioma biopsies and paraffin sections of the same material as well as glioma cultures established from these, variable antigenic profiles among glioma cell populations could be demonstrated. From these results it is evident that there is not only a distinct degree of antigenic heterogeneity among and within brain tumors, but also that the pattern of antigenic expression can change continuously. Some of the glioma associated antigens recognized by the selected antibodies persist after fixation with methanol/acetone and Karnovsky's fixative and probably are oncoembryonic/oncofetal antigen(s). The data suggest that the use of McAbs recognizing tumor associated oncofetal antigens in immunohistochemistry facilitates objective typing of intracranial malignancies and precise analysis of fine needle brain/tumor biopsies in a sensitive and reproducible manner

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
    corecore