59 research outputs found

    Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research

    Get PDF
    Drosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD). Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 μg/dl), can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function. In order to better understand how lead affects neuronal plasticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory who have joined forces to study the effects of lead on the Drosophila nervous system. Studying the effects of lead on Drosophila nervous system development will give us a better understanding of the mechanisms of Pb neurotoxicity in the developing human nervous system

    Distinct Functions of Period2 and Period3 in the Mouse Circadian System Revealed by In Vitro Analysis

    Get PDF
    The mammalian circadian system, which is composed of a master pacemaker in the suprachiasmatic nuclei (SCN) as well as other oscillators in the brain and peripheral tissues, controls daily rhythms of behavior and physiology. Lesions of the SCN abolish circadian rhythms of locomotor activity and transplants of fetal SCN tissue restore rhythmic behavior with the periodicity of the donor's genotype, suggesting that the SCN determines the period of the circadian behavioral rhythm. According to the model of timekeeping in the SCN, the Period (Per) genes are important elements of the transcriptional/translational feedback loops that generate the endogenous circadian rhythm. Previous studies have investigated the functions of the Per genes by examining locomotor activity in mice lacking functional PERIOD proteins. Variable behavioral phenotypes were observed depending on the line and genetic background of the mice. In the current study we assessed both wheel-running activity and Per1-promoter-driven luciferase expression (Per1-luc) in cultured SCN, pituitary, and lung explants from Per2−/− and Per3−/− mice congenic with the C57BL/6J strain. We found that the Per2−/− phenotype is enhanced in vitro compared to in vivo, such that the period of Per1-luc expression in Per2−/− SCN explants is 1.5 hours shorter than in Per2+/+ SCN, while the free-running period of wheel-running activity is only 11 minutes shorter in Per2−/− compared to Per2+/+ mice. In contrast, circadian rhythms in SCN explants from Per3−/− mice do not differ from Per3+/+ mice. Instead, the period and phase of Per1-luc expression are significantly altered in Per3−/− pituitary and lung explants compared to Per3+/+ mice. Taken together these data suggest that the function of each Per gene may differ between tissues. Per2 appears to be important for period determination in the SCN, while Per3 participates in timekeeping in the pituitary and lung

    Natural Variation in Decision-Making Behavior in Drosophila melanogaster

    Get PDF
    There has been considerable recent interest in using Drosophila melanogaster to investigate the molecular basis of decision-making behavior. Deciding where to place eggs is likely one of the most important decisions for a female fly, as eggs are vulnerable and larvae have limited motility. Here, we show that many natural genotypes of D. melanogaster prefer to lay eggs near nutritious substrate, rather than in nutritious substrate. These preferences are highly polymorphic in both degree and direction, with considerable heritability (0.488) and evolvability

    Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) and end-stage renal disease (ESRD) represent worldwide health problems with an epidemic extent. Therefore, attention must be given to the optimisation of patient care, as gaps in the care of CKD and ESRD patients are well documented. As part of a multidisciplinary patient care strategy, clinical pharmacy services have led to improvements in patient care. The purpose of this study was to summarise the available evidence regarding the role and impact of clinical pharmacy services for these patient populations.</p> <p>Methods</p> <p>A literature search was conducted using the <it>Medline</it>, <it>Embase </it>and <it>International Pharmaceutical Abstracts </it>databases to identify relevant studies on the impact of clinical pharmacists on CKD and ESRD patients, regarding disease-oriented and patient-oriented outcomes, and clinical pharmacist interventions on drug-related problems.</p> <p>Results</p> <p>Among a total of 21 studies, only four (19%) were controlled trials. The majority of studies were descriptive (67%) and before-after studies (14%). Interventions comprised general clinical pharmacy services with a focus on detecting, resolving and preventing drug-related problems, clinical pharmacy services with a focus on disease management, or clinical pharmacy services with a focus on patient education in order to increase medication knowledge. Anaemia was the most common comorbidity managed by clinical pharmacists, and their involvement led to significant improvement in investigated disease-oriented outcomes, for example, haemoglobin levels. Only four of the studies (including three controlled trials) presented data on patient-oriented outcomes, for example, quality of life and length of hospitalisation. Studies investigating the number and type of clinical pharmacist interventions and physician acceptance rates reported a mean acceptance rate of 79%. The most common reported drug-related problems were incorrect dosing, the need for additional pharmacotherapy, and medical record discrepancies.</p> <p>Conclusions</p> <p>Few high-quality trials addressing the benefit and impact of clinical pharmacy services in CKD and ESRD patients have been published. However, all available studies reported some positive impact resulting from clinical pharmacist involvement, including various investigated outcome measures that could be improved. Additional randomised controlled trials investigating patient-oriented outcomes are needed to further determine the role of clinical pharmacists and the benefits of clinical pharmacy services to CKD and ESRD patients.</p

    Larval Ethanol Exposure Alters Free-running Circadian Rhythm and Per Locus Transcription in Adult D. melanogaster Period Mutants

    No full text
    Alcohol consumption causes disruptions in a variety of daily rhythms, including the circadian free-running rhythm. A previous study conducted in our laboratories has shown that larval ethanol exposure alters the free-running period in adult Canton-S Drosophila melanogaster. Few studies, however, have explored the effect of alcohol exposure on organisms exhibiting circadian periods radically different than (normal) 24-h. We reared Canton-S, period long, and period short Drosophila melanogaster larvae on 10%-ethanol supplemented food, and assessed their adult free-running locomotor activity and period transcript at ZT 12. We demonstrate that in Canton-S larval ethanol exposure shortens the adult free-running locomotor activity but does not significantly alter period mRNA levels at ZT 12. Period long mutants exposed to larval ethanol had significantly shortened adult free-running locomotor activity rhythms and decreased period mRNA levels, while period short mutants lengthened their free-running rhythm and showed increased period mRNA levels at ZT 12 after being exposed to larval ethanol. These results indicate that the effects of ethanol on the circadian clock might depend upon the baseline circadian period of the organism or that period mutant gene expression is sensitive to developmental ethanol treatment
    corecore