72 research outputs found

    A novel dynamic neonatal blood-brain barrier on a chip

    Get PDF
    © 2015 Deosarkar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1). ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM) or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0±0.9 x 10?6 cm/s to 2.9±1.0 x 10?6 cm/s or 1.1±0.4 x 10?6 cm/s, respectively). Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we developed a first dynamic in vitro neonatal BBB on a chip (B3C) that closely mimics the in vivo microenvironment, offers the flexibility of real time analysis, and is suitable for studies of BBB function as well as screening of novel therapeutics

    Multi-cell Agent-based Simulation of the Microvasculature to Study the Dynamics of Circulating Inflammatory Cell Trafficking

    Full text link
    Abstract—Leukocyte trafficking through the microcircula-tion and into tissues is central in angiogenesis, inflammation, and the immune response. Although the literature is rich with mechanistic detail describing molecular mediators of these processes, integration of signaling events and cell behaviors within a unified spatial and temporal framework at the multi-cell tissue-level is needed to achieve a fuller understanding. We have developed a novel computational framework that combines agent-based modeling (ABM) with a network flow analysis to study monocyte homing. A microvascular net-work architecture derived from mouse muscle was incorpo-rated into the ABM. Each individual cell was represented by an individual agent in the simulation. The network flow model calculates hemodynamic parameters (blood flow rates, fluid shear stress, and hydrostatic pressures) throughout the simulated microvascular network. These are incorporated into the ABM to affect monocyte transit through the network and chemokine/cytokine concentrations. In turn, simulated monocytes respond to their local mechanical and biochemical environments and make behavioral decisions based on a rule set derived from independent literature. Simulated cell behaviors give rise to emergent leukocyte rolling, adhesion, and extravasation. Molecular knockout simulations were performed to validate the model, and predictions of monocyte adhesion, rolling, and extravasation show good agreement with the independently published corresponding mouse studies

    A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip.

    No full text
    Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1). ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM) or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0 ± 0.9 x 10-6 cm/s to 2.9 ± 1.0 x 10-6 cm/s or 1.1±0.4 x 10-6 cm/s, respectively). Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we developed a first dynamic in vitro neonatal BBB on a chip (B3C) that closely mimics the in vivo microenvironment, offers the flexibility of real time analysis, and is suitable for studies of BBB function as well as screening of novel therapeutics

    Schematic illustration and images of neonatal blood-brain barrier on a chip (B<sup>3</sup>C).

    No full text
    <p>Schematic illustration of B<sup>3</sup>C showing the tissue compartment in the center of the device surrounded by two independent vascular channels with flow access openings. The dimensions of vascular channels are 200 μm x 100 μm x 2762 μm (width x height x length) and the dimensions of tissue compartment are 1575 μm x 100 μm (diameter x height). Vascular channels are in communication with the tissue compartment through a series of 3μm porous interface (pore dimensions are: 3μm x 3μm x 100 μm, width x height x length, spaced every 50 μm) along the length of the vascular channels (A). Schematic illustration of cell culture in B<sup>3</sup>C device showing one of two vascular channels (blue) with endothelial cells lining the channel walls, the tissue compartment (red) containing astrocytes, and the porous interface (white) separating the vascular channel and tissue compartment (B). The B<sup>3</sup>C device is assembled on a microscope glass slide with plastic tubes (dark blue) allowing access to individual vascular channels and the tissue compartment (C).</p
    corecore