33,308 research outputs found

    Zippering and Intermeshing: Novel Phase Diagrams for Interfaces and Films

    Get PDF
    New surface and layering phase diagrams are proposed based on generalized sine-Gordon models with and without a substrate potential. In particular, we find that the preroughening transition can be driven first order, explaining “zipper” features in heat capacity data for argon and krypton on graphite substrates. For different parameters, we predict the existence of a novel variant of den Nijs' disordered flat phase with spontaneously broken particle-hole symmetry and continuously varying surface height with an accompanying intermeshing layering phase diagram. The restricted solid-on-solid model displays zippering for sufficiently large second neighbor coupling

    An Adaptive Conditional Zero-Forcing Decoder with Full-diversity, Least Complexity and Essentially-ML Performance for STBCs

    Full text link
    A low complexity, essentially-ML decoding technique for the Golden code and the 3 antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs) - the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the 3 and 4 antenna Perfect codes, the 3 antenna Threaded Algebraic Space-Time code and the 4 antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm outperform all known codes in terms of decoding complexity and error performance for 2,3 and 4 transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.Comment: 11 pages, 4 figures. Corrected a minor typographical erro

    Full-Rate, Full-Diversity, Finite Feedback Space-Time Schemes with Minimum Feedback and Transmission Duration

    Full text link
    In this paper a MIMO quasi static block fading channel with finite N-ary delay-free, noise-free feedback is considered. The transmitter uses a set of N Space-Time Block Codes (STBCs), one corresponding to each of the N possible feedback values, to encode and transmit information. The feedback function used at the receiver and the N component STBCs used at the transmitter together constitute a Finite Feedback Scheme (FFS). Although a number of FFSs are available in the literature that provably achieve full-diversity, there is no known universal criterion to determine whether a given arbitrary FFS achieves full-diversity or not. Further, all known full-diversity FFSs for T<N_t where N_t is the number of transmit antennas, have rate at the most 1. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, using which the notion of Feedback-Transmission duration optimal (FT-Optimal) FFSs - schemes that use minimum amount of feedback N given the transmission duration T, and minimum transmission duration given the amount of feedback to achieve full-diversity - is introduced. When there is no feedback (N=1) an FT-optimal scheme consists of a single STBC with T=N_t, and the universal necessary condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity: every non-zero codeword difference matrix of the STBC must be of rank N_t. Also, a sufficient condition for full-diversity is given for the FFSs in which the component STBC with the largest minimum Euclidean distance is chosen. Using this sufficient condition full-rate (rate N_t) full-diversity FT-Optimal schemes are constructed for all (N_t,T,N) with NT=N_t. These are the first full-rate full-diversity FFSs reported in the literature for T<N_t. Simulation results show that the new schemes have the best error performance among all known FFSs.Comment: 12 pages, 5 figures, 1 tabl

    Influence of large deflection and transverse shear on random response of rectangular symmetric composite laminates to acoustic loads

    Get PDF
    Nonlinear equations of motion of symmetrically laminated anisotropic plates are derived accounting for von Karman strains. The effect of transverse shear is included in the formulation and the rotatory inertia effect is ignored. Using a single-mode Galerkin procedure the nonlinear modal equation is obtained. Direct equivalent linearization is employed. The response of acoustic excitation on moderately thick composite panels is studied. Further, the effects of transverse shear on large deflection vibration of laminates under random excitation are studied. Mean-square deflection and mean-square inplane stresses are obtained for some symmetric graphite-epoxy laminates. Using equilibrium equations and the continuity requirements, the mean-square transverse shear stresses are calculated. The results obtained will be useful in the sonic fatigue design of composite aircraft panels. The analysis is presented in detail for simply supported plate. The analogous equations for a clamped case are given in the appendix
    corecore