1,071 research outputs found

    The cluster of galaxies Abell 376

    Full text link
    We present a dynamical analysis of the galaxy cluster Abell 376 based on a set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence observatories and completed with data from the literature. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as well as some properties of the cluster. We obtained an improved mean redshift value z=0.0478^{+0.005}_{-0.006} and velocity dispersion sigma=852^{+120}_{-76}km/s. Our analysis indicates that inside a radius of 900h_{70}^{-1}kpc (15 arcmin) the cluster is well relaxed without any remarkable feature and the X-ray emission traces fairly well the galaxy distribution. A possible substructure is seen at 20 arcmin from the centre towards the Southwest direction, but is not confirmed by the velocity field. This SW clump is, however, kinematically bound to the main structure of Abell 376. A dense condensation of galaxies is detected at 46 arcmin (projected distance 2.6h_{70}^{-1}Mpc) from the centre towards the Northwest and analysis of the apparent luminosity distribution of its galaxies suggests that this clump is part of the large scale structure of Abell 376. X-ray spectroscopic analysis of ASCA data resulted in a temperature kT = 4.3+/-0.4 keV and metal abundance Z = 0.32+/-0.08 Z_solar. The velocity dispersion corresponding to this temperature using the T_X-sigma scaling relation is in agreement with the measured galaxies velocities.Comment: 11 pages, 10 figures, accepted for publication in A&

    The Cluster of Galaxies Abell 970

    Get PDF
    We present a dynamical analysis of the galaxy cluster Abell 970 based on a new set of radial velocities measured at ESO, Pic du Midi and Haute-Provence observatories. Our analysis indicates that this cluster has a substructure and is out of dynamical equilibrium. This conclusion is also supported by differences in the positions of the peaks of the surface density distribution and X-ray emission, as well as by the evidence of a large scale velocity gradient in the cluster. We also found a discrepancy between the masses inferred with the virial theorem and with the X-ray emission, what is expected if the galaxies and the gas inside the cluster are not in hydrostatic equilibrium. Abell 970 has a modest cooling flow, as is expected if it is out of equilibrium as suggested by Allen (1998). We propose that cooling flows may have an intermittent behavior, with phases of massive cooling flows being followed by phases without significant cooling flows after the acretion of a galaxy group massive enough to disrupt the dynamical equilibrium in the center of the clusters. A massive cooling flow will be established again, after a new equilibrium is achieved.Comment: 24 pages, 9 figures, submitted to A&

    Quantum-Classical Crossover and Apparent Metal-Insulator Transition in a Weakly Interacting 2D Fermi Liquid

    Full text link
    We report the observation of a parallel magnetic field induced metal-insulator transition (MIT) in a high-mobility two-dimensional electron gas (2DEG) for which spin and localization physics most likely play no major role. The high-mobility metallic phase at low field is consistent with the established Fermi liquid transport theory including phonon scattering, whereas the insulating phase at higher field shows a large negative temperature dependence at resistances much smaller than the quantum of resistance, h/e2h/e^2. We argue that this observation is a direct manifestation of a quantum-classical crossover arising predominantly from the magneto-orbital coupling between the finite width of the 2DEG and the in-plane magnetic field.Comment: 4 pages, 2 figure

    An electronic instability in bismuth far beyond the quantum limit

    Full text link
    We present a transport study of semi-metallic bismuth in presence of a magnetic field applied along the trigonal axis extended to 55 T for electric conductivity and to 45 T for thermoelectric response. The results uncover a new field scale at about 40 T in addition to the previously detected ones. Large anomalies in all transport properties point to an intriguing electronic instability deep in the ultraquantum regime. Unexpectedly, both the sheer magnitude of conductivity and its metallic temperature dependence are enhanced by this instability.Comment: 5 pages, 4 figure

    Competing types of quantum oscillations in the 2D organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2

    Full text link
    Interlayer magnetoconductance of the quasi-two dimensional organic metal (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 has been investigated in pulsed magnetic fields extending up to 36 T and in the temperature range from 1.6 to 15 K. A complex oscillatory spectrum, built on linear combinations of three basic frequencies only is observed. These basic frequencies arise from the compensated closed hole and electron orbits and from the two orbits located in between. The field and temperature dependencies of the amplitude of the various oscillation series are studied within the framework of the coupled orbits model of Falicov and Stachowiak. This analysis reveals that these series result from the contribution of either conventional Shubnikov-de Haas effect (SdH) or quantum interference (QI), both of them being induced by magnetic breakthrough. Nevertheless, discrepancies between experimental and calculated parameters indicate that these phenomena alone cannot account for all of the data. Due to its low effective mass, one of the QI oscillation series - which corresponds to the whole first Brillouin zone area - is clearly observed up to 13 K.Comment: 8 pages, 8 figures. To be published in Phys. Rev.

    Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport

    Full text link
    We report on the study of the Fermi surface of the electron-doped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_{4} by measuring the interlayer magnetoresistance as a function of the strength and orientation of the applied magnetic field. We performed experiments in both steady and pulsed magnetic fields on high-quality single crystals with Ce concentrations of x=0.13x=0.13 to 0.17. In the overdoped regime of x>0.15x > 0.15 we found both semiclassical angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH) oscillations. The combined AMRO and SdH data clearly show that the appearance of fast SdH oscillations in strongly overdoped samples is caused by magnetic breakdown. This observation provides clear evidence for a reconstructed multiply-connected Fermi surface up to the very end of the overdoped regime at x0.17x\simeq 0.17. The strength of the superlattice potential responsible for the reconstructed Fermi surface is found to decrease with increasing doping level and likely vanishes at the same carrier concentration as superconductivity, suggesting a close relation between translational symmetry breaking and superconducting pairing. A detailed analysis of the high-resolution SdH data allowed us to determine the effective cyclotron mass and Dingle temperature, as well as to estimate the magnetic breakdown field in the overdoped regime.Comment: 23 pages, 8 figure

    Nernst and Seebeck Coefficients of the Cuprate SuperconductorYBa2_2Cu3_3O6.67_{6.67}: A Study of Fermi Surface Reconstruction

    Full text link
    The Seebeck and Nernst coefficients SS and ν\nu of the cuprate superconductor YBa2_2Cu3_3Oy_y (YBCO) were measured in a single crystal with doping p=0.12p = 0.12 in magnetic fields up to H = 28 T. Down to T=9 K, ν\nu becomes independent of field by H30H \simeq 30 T, showing that superconducting fluctuations have become negligible. In this field-induced normal state, S/TS/T and ν/T\nu/T are both large and negative in the T0T \to 0 limit, with the magnitude and sign of S/TS/T consistent with the small electron-like Fermi surface pocket detected previously by quantum oscillations and the Hall effect. The change of sign in S(T)S(T) at T50T \simeq 50 K is remarkably similar to that observed in La2x_{2-x}Bax_xCuO4_4, La2xy_{2-x-y}Ndy_ySrx_xCuO4_4 and La2xy_{2-x-y}Euy_ySrx_xCuO4_4, where it is clearly associated with the onset of stripe order. We propose that a similar density-wave mechanism causes the Fermi surface reconstruction in YBCO.Comment: Final version accepted for publication in Phys. Rev. Lett. New title, shorter abstract, minor revision of text and added reference
    corecore