3,085 research outputs found
Black holes, quantum information, and unitary evolution
The unitary crisis for black holes indicates an apparent need to modify local
quantum field theory. This paper explores the idea that quantum mechanics and
in particular unitarity are fundamental principles, but at the price of
familiar locality. Thus, one should seek to parameterize unitary evolution,
extending the field theory description of black holes, such that their quantum
information is transferred to the external state. This discussion is set in a
broader framework of unitary evolution acting on Hilbert spaces comprising
subsystems. Here, various constraints can be placed on the dynamics, based on
quantum information-theoretic and other general physical considerations, and
one can seek to describe dynamics with "minimal" departure from field theory.
While usual spacetime locality may not be a precise concept in quantum gravity,
approximate locality seems an important ingredient in physics. In such a
Hilbert space approach an apparently "coarser" form of localization can be
described in terms of tensor decompositions of the Hilbert space of the
complete system. This suggests a general framework in which to seek a
consistent description of quantum gravity, and approximate emergence of
spacetime. Other possible aspects of such a framework -- in particular
symmetries -- are briefly discussed.Comment: 39 pages, 5 figures. v2: refs added, very minor clarifications v3:
few small changes to agree with published version v4: corrected sign in eq.
3.3
Panels illuminated by edge-lighted lens technique
Electroluminescent lamps used to edge-light a specially ground lens provide nonglare, reduced eye strain panel illumination. There is no noticeable falloff in brightness along the lens edge. Light intensity diminishes toward the lens center. A slight halo, observed along the lens edge, has no detrimental effect
Wightman Functions' Behaviour on the Event Horizon of an Extremal Reissner-Nordstr\"om Black Hole
A weaker Haag, Narnhofer and Stein prescription as well as a weaker Hessling
Quantum Equivalence Principle for the behaviour of thermal Wightman functions
on an event horizon are analysed in the case of an extremal
Reissner-Nordstr\"{o}m black hole in the limit of a large mass. In order to
avoid the degeneracy of the metric in the stationary coordinates on the
horizon, a method is introduced which employs the invariant length of geodesics
which pass the horizon. First the method is checked for a massless scalar field
on the event horizon of the Rindler wedge, extending the original procedure of
Haag, Narnhofer and Stein onto the {\em whole horizon} and recovering the same
results found by Hessling. Afterwards the HNS prescription and Hessling's
prescription for a massless scalar field are analysed on the whole horizon of
an extremal Reissner-Nordstr\"{o}m black hole in the limit of a large mass. It
is proved that the weak form of the HNS prescription is satisfyed for all the
finite values of the temperature of the KMS states, i.e., this principle does
not determine any Hawking temperature. It is found that the
Reissner-Nordstr\"{o}m vacuum, i.e., does satisfy the weak HNS
prescription and it is the only state which satisfies weak Hessling's
prescription, too. Finally, it is suggested that all the previously obtained
results should be valid dropping the requirements of a massless field and of a
large mass black hole.Comment: 27 pages, standard LaTex, no figures, final version containing the
results following from Hessling's principle as they appeared in the other
paper gr-qc/9510016, minor changes in the text and in references, it will
appear on Class. Quant. Gra
Representations of Spacetime Alternatives and Their Classical Limits
Different quantum mechanical operators can correspond to the same classical
quantity. Hermitian operators differing only by operator ordering of the
canonical coordinates and momenta at one moment of time are the most familiar
example. Classical spacetime alternatives that extend over time can also be
represented by different quantum operators. For example, operators representing
a particular value of the time average of a dynamical variable can be
constructed in two ways: First, as the projection onto the value of the time
averaged Heisenberg picture operator for the dynamical variable. Second, as the
class operator defined by a sum over those histories of the dynamical variable
that have the specified time-averaged value. We show both by explicit example
and general argument that the predictions of these different representations
agree in the classical limit and that sets of histories represented by them
decohere in that limit.Comment: 11 pages, 10 figures, Revtex4, minor correction
Nickel hydrogen low Earth orbit test program update and status
The current status of nickel-hydrogen (NiH2) testing ongong at NWSC, Crane In, and The Aerospace Corporation, El Segundo, Ca are described. The objective of this testing is to develop a database for NiH2 battery use in Low Earth Orbit (LEO) and support applications in Medium Altitude Orbit (MAO). Individual pressure vessel-type cells are being tested. A minimum of 200 cells (3.5 in diameter and 4.5 in diameter) are included in the test, from four U.S. vendors. As of this date (Nov. 18, 1986) approximately 60 cells have completed preliminary testing (acceptance, characterization, and environmental testing) and have gone into life cycling
Positivity violation for the lattice Landau gluon propagator
We present explicit numerical evidence of reflection-positivity violation for
the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge
theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3)
and for three different lattice couplings in the scaling region (beta = 4.2,
5.0, 6.0). In particular, we observe a clear oscillatory pattern in the
real-space propagator C(t). We also verify that the (real-space) data show good
scaling in the range t \in [0,3] fm and can be fitted using a Gribov-like form.
The violation of positivity is in contradiction with a stable-particle
interpretation of the associated field theory and may be viewed as a
manifestation of confinement.Comment: 5 pages, 6 figures; minor modifications in the text and in the
bibliograph
Comment on: Modular Theory and Geometry
In this note we comment on part of a recent article by B. Schroer and H.-W.
Wiesbrock. Therein they calculate some new modular structure for the
U(1)-current-algebra (Weyl-algebra). We point out that their findings are true
in a more general setting. The split-property allows an extension to
doubly-localized algebras.Comment: 13 pages, corrected versio
Decoherence of Macroscopic Closed Systems within Newtonian Quantum Gravity
A theory recently proposed by the author aims to explain decoherence and the
thermodynamical behaviour of closed systems within a conservative, unitary,
framework for quantum gravity by assuming that the operators tied to the
gravitational degrees of freedom are unobservable and equating physical entropy
with matter-gravity entanglement entropy. Here we obtain preliminary results on
the extent of decoherence this theory predicts. We treat first a static state
which, if one were to ignore quantum gravitational effects, would be a quantum
superposition of two spatially displaced states of a single classically well
describable ball of uniform mass density in empty space. Estimating the quantum
gravitational effects on this system within a simple Newtonian approximation,
we obtain formulae which predict e.g. that as long as the mass of the ball is
considerably larger than the Planck mass, such a would-be-coherent static
superposition will actually be decohered whenever the separation of the centres
of mass of the two ball-states excedes a small fraction (which decreases as the
mass of the ball increases) of the ball radius. We then obtain a formula for
the quantum gravitational correction to the would-be-pure density matrix of a
non-relativistic many-body Schroedinger wave function and argue that this
formula predicts decoherence between configurations which differ (at least) in
the "relocation" of a cluster of particles of Planck mass. We estimate the
entropy of some simple model closed systems, finding a tendency for it to
increase with "matter-clumping" suggestive of a link with existing
phenomenological discussions of cosmological entropy increase.Comment: 11 pages, plain TeX, no figures. Accepted for publication as a
"Letter to the Editor" in "Classical and Quantum Gravity
Quantum information transfer and models for black hole mechanics
General features of information transfer between quantum subsystems, via
unitary evolution, are investigated, with applications to the problem of
information transfer from a black hole to its surroundings. A particularly
direct form of quantum information transfer is "subspace transfer," which can
be characterized by saturation of a subadditivity inequality. We also describe
more general unitary quantum information transfer, and categorize different
models for black hole evolution. Evolution that only creates paired excitations
inside/outside the black hole is shown not to extract information, but
information-transferring models exist both in the "saturating" and
"non-saturating" category. The former more closely capture thermodynamic
behavior; the latter generically have enhanced energy flux, beyond that of
Hawking.Comment: 31 pages, harvmac. v2: nomenclature change, minor added explanation.
v3: small corrections/rewordings; improved figure; version to match
publication in PR
Relational interpretation of the wave function and a possible way around Bell's theorem
The famous ``spooky action at a distance'' in the EPR-szenario is shown to be
a local interaction, once entanglement is interpreted as a kind of ``nearest
neighbor'' relation among quantum systems. Furthermore, the wave function
itself is interpreted as encoding the ``nearest neighbor'' relations between a
quantum system and spatial points. This interpretation becomes natural, if we
view space and distance in terms of relations among spatial points. Therefore,
``position'' becomes a purely relational concept. This relational picture leads
to a new perspective onto the quantum mechanical formalism, where many of the
``weird'' aspects, like the particle-wave duality, the non-locality of
entanglement, or the ``mystery'' of the double-slit experiment, disappear.
Furthermore, this picture cirumvents the restrictions set by Bell's
inequalities, i.e., a possible (realistic) hidden variable theory based on
these concepts can be local and at the same time reproduce the results of
quantum mechanics.Comment: Accepted for publication in "International Journal of Theoretical
Physics
- …
