14,033 research outputs found
Observations of attenuation at 20.6, 31.65 and 90.0 GHz: Preliminary results from Wallops Island, VA
Ground based radiometric observations of atmospheric attenuation at 20.6, 31.65, and 90.0 GHz were made at Wallops Island, Virginia during April and May 1989. Early results from the analysis of the data set are compared with previous observations from California and Colorado. The relative attenuation ratios observed at each frequency during clear, cloudy, and rainy conditions are shown. Plans for complete analysis of the data are described
Hawking radiation without black hole entropy
In this Letter I point out that Hawking radiation is a purely kinematic
effect that is generic to Lorentzian geometries. Hawking radiation arises for
any test field on any Lorentzian geometry containing an event horizon
regardless of whether or not the Lorentzian geometry satisfies the dynamical
Einstein equations of general relativity. On the other hand, the classical laws
of black hole mechanics are intrinsically linked to the Einstein equations of
general relativity (or their perturbative extension into either semiclassical
quantum gravity or string-inspired scenarios). In particular, the laws of black
hole thermodynamics, and the identification of the entropy of a black hole with
its area, are inextricably linked with the dynamical equations satisfied by the
Lorentzian geometry: entropy is proportional to area (plus corrections) if and
only if the dynamical equations are the Einstein equations (plus corrections).
It is quite possible to have Hawking radiation occur in physical situations in
which the laws of black hole mechanics do not apply, and in situations in which
the notion of black hole entropy does not even make any sense. This observation
has important implications for any derivation of black hole entropy that seeks
to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
Nitric acid scavenging by mineral and biomass burning aerosols
The abundance of gas phase nitric acid in the upper troposphere is overestimated by global chemistry-transport models, especially during the spring and summer seasons. Recent aircraft data obtained over the central US show that mineral aerosols were abundant in the upper troposphere during spring. Chemical reactions on mineral dust may provide an important sink for nitric acid. In regions where the mineral dust abundance is low in the upper troposphere similar HNO3 removal processes may occur on biomass burning aerosols. We propose that mineral and biomass burning aerosols may provide an important global sink for gas phase nitric acid, particularly during spring and summer when aerosol composition in the upper troposphere may be greatly affected by dust storms from east Asia or tropical biomass burning plumes
Self-Dual Action for Fermionic Fields and Gravitation
This paper studies the self-dual Einstein-Dirac theory. A generalization is
obtained of the Jacobson-Smolin proof of the equivalence between the self-dual
and Palatini purely gravitational actions. Hence one proves equivalence of
self-dual Einstein-Dirac theory to the Einstein-Cartan-Sciama-Kibble-Dirac
theory. The Bianchi symmetry of the curvature, core of the proof, now contains
a non-vanishing torsion. Thus, in the self-dual framework, the extra terms
entering the equations of motion with respect to the standard Einstein-Dirac
field equations, are neatly associated with torsion.Comment: 13 pages, plain-tex, recently appearing in Nuovo Cimento B, volume
109, pages 973-982, September 199
Stochastically Fluctuating Black-Hole Geometry, Hawking Radiation and the Trans-Planckian Problem
We study the propagation of null rays and massless fields in a black hole
fluctuating geometry. The metric fluctuations are induced by a small
oscillating incoming flux of energy. The flux also induces black hole mass
oscillations around its average value. We assume that the metric fluctuations
are described by a statistical ensemble. The stochastic variables are the
phases and the amplitudes of Fourier modes of the fluctuations. By averaging
over these variables, we obtain an effective propagation for massless fields
which is characterized by a critical length defined by the amplitude of the
metric fluctuations: Smooth wave packets with respect to this length are not
significantly affected when they are propagated forward in time. Concomitantly,
we find that the asymptotic properties of Hawking radiation are not severely
modified. However, backward propagated wave packets are dissipated by the
metric fluctuations once their blue shifted frequency reaches the inverse
critical length. All these properties bear many resemblences with those
obtained in models for black hole radiation based on a modified dispersion
relation. This strongly suggests that the physical origin of these models,
which were introduced to confront the trans-Planckian problem, comes from the
fluctuations of the black hole geometry.Comment: 32 page
How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity
Solutions to both the diffeomorphism and the hamiltonian constraint of
quantum gravity have been found in the loop representation, which is based on
Ashtekar's new variables. While the diffeomorphism constraint is easily solved
by considering loop functionals which are knot invariants, there remains the
puzzle why several of the known knot invariants are also solutions to the
hamiltonian constraint. We show how the Jones polynomial gives rise to an
infinite set of solutions to all the constraints of quantum gravity thereby
illuminating the structure of the space of solutions and suggesting the
existance of a deep connection between quantum gravity and knot theory at a
dynamical level.Comment: 7p
Guiding properties of a non-isothermal atmosphere for acoustic-gravity waves
The propagation of pressure waves in a stratified,
non-isothermal atmosphere is studied in the linear approximation. It is found that acoustic and
acoustic-gravity waves can be horizontally guided by the effect of the Earth’s thermocline alone, under very mild conditions on the temperature gradient steepness. The effect of the Earth’s surface is also studied. Lamb’s modes associated with the rigid surface are, then, identified and their behaviour, as a function of the Earth’s position, is discussed. Finally, dissipation is included, and its effect is derived using a perturbation technique
- …
