32,127 research outputs found
Noise and thermal stability of vibrating micro-gyrometers preamplifiers
The preamplifier is a critical component of gyrometer's electronics. Indeed
the resolution of the sensor is limited by its signal to noise ratio, and the
gyrometer's thermal stability is limited by its gain drift. In this paper, five
different kinds of preamplifiers are presented and compared. Finally, the
design of an integrated preamplifier is shown in order to increase the gain
stability while reducing its noise and size.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Quantum Monte Carlo Algorithm Based on Two-Body Density Functional Theory for Fermionic Many-Body Systems: Application to 3He
We construct a quantum Monte Carlo algorithm for interacting fermions using
the two-body density as the fundamental quantity. The central idea is mapping
the interacting fermionic system onto an auxiliary system of interacting
bosons. The correction term is approximated using correlated wave functions for
the interacting system, resulting in an effective potential that represents the
nodal surface. We calculate the properties of 3He and find good agreement with
experiment and with other theoretical work. In particular, our results for the
total energy agree well with other calculations where the same approximations
were implemented but the standard quantum Monte Carlo algorithm was usedComment: 4 pages, 3 figures, 1 tabl
The phase-dependent linear conductance of a superconducting quantum point contact
The exact expression for the phase-dependent linear conductance of a weakly
damped superconducting quantum point contact is obtained. The calculation is
performed by summing up the complete perturbative series in the coupling
between the electrodes. The failure of any finite order perturbative expansion
in the limit of small voltage and small quasi-particle damping is analyzed in
detail. In the low transmission regime this nonperturbative calculation yields
a result which is at variance with standard tunnel theory. Our result predicts
the correct sign of the quasi-particle pair interference term and exhibits an
unusual phase-dependence at low temperatures in qualitative agreement with the
available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let
Luttinger liquid behavior in weakly disordered quantum wires
We have measured the temperature dependence of the conductance in long
V-groove quantum wires (QWRs) fabricated in GaAs/AlGaAs heterostructures. Our
data is consistent with recent theories developed within the framework of the
Luttinger liquid model, in the limit of weakly disordered wires. We show that
for the relatively small amount of disorder in our QWRs, the value of the
interaction parameter g is g=0.66, which is the expected value for GaAs.
However, samples with a higher level of disorder show conductance with stronger
temperature dependence, which does not allow their treatment in the framework
of perturbation theory. Trying to fit such data with perturbation-theory models
leads inevitably to wrong (lower) values of g.Comment: 4 pages, 4 figure
Scale invariant correlations and the distribution of prime numbers
Negative correlations in the distribution of prime numbers are found to
display a scale invariance. This occurs in conjunction with a nonstationary
behavior. We compare the prime number series to a type of fractional Brownian
motion which incorporates both the scale invariance and the nonstationary
behavior. Interesting discrepancies remain. The scale invariance also appears
to imply the Riemann hypothesis and we study the use of the former as a test of
the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.
Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors
We study fluctuations of spin-polarized currents in a three-terminal
spin-valve system consisting of a diffusive normal metal wire connected by
tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent
Boltzmann-Langevin equation, we develop a semiclassical theory of charge and
spin currents and the correlations of the currents fluctuations. In the three
terminal system, we show that current fluctuations are strongly affected by the
spin-flip scattering in the normal metal and the spin polarizations of the
terminals, which may point in different directions. We analyze the dependence
of the shot noise and the cross-correlations on the spin-flip scattering rate
in the full range of the spin polarizations and for different magnetic
configurations. Our result demonstrate that noise measurements in
multi-terminal devices allow to determine the spin-flip scattering rate by
changing the polarizations of ferromagnetic terminals.Comment: 12 pages, 5 figure
Constraining the initial temperature and shear viscosity in a hybrid hydrodynamic model of =200 GeV Au+Au collisions using pion spectra, elliptic flow, and femtoscopic radii
A new framework for evaluating hydrodynamic models of relativistic heavy ion
collisions has been developed. This framework, a Comprehesive Heavy Ion Model
Evaluation and Reporting Algorithm (CHIMERA) has been implemented by augmenting
UVH 2+1D viscous hydrodynamic model with eccentricity fluctuations,
pre-equilibrium flow, and the Ultra-relativistic Quantum Molecular Dynamic
(UrQMD) hadronic cascade. A range of initial temperatures and shear viscosity
to entropy ratios were evaluated for four initial profiles, and
scaling with and without pre-equilibrium flow. The model results
were compared to pion spectra, elliptic flow, and femtoscopic radii from 200
GeV Au+Au collisions for the 0--20% centrality range.Two sets of initial
density profiles, scaling with pre-equilibrium flow and
scaling without were shown to provide a consistent description of all three
measurements.Comment: 21 pages, 32 figures, version 3 includes additional text for
clarification, division of figures into more manageable units, and placement
of chi-squared values in tables for ease of viewin
Majorana single-charge transistor
We study transport through a Coulomb blockaded topologically nontrivial superconducting wire (with Majorana end states) contacted by metallic leads. An exact formula for the current through this interacting Majorana single-charge transistor is derived in terms of wire spectral functions. A comprehensive picture follows from three different approaches. We find Coulomb oscillations with universal halving of the finite-temperature peak conductance under strong blockade conditions, where the valley conductance mainly comes from elastic cotunneling. The nonlinear conductance exhibits finite-voltage sidebands due to anomalous tunneling involving Cooper pair splittingThis work was supported by the DFG (Grant No. EG-96/ 9-1 and SFB TR 12), by the EU network SE2ND, and by the Spanish MICINN under Contract FIS2008-0420
Spin Susceptibility and Gap Structure of the Fractional-Statistics Gas
This paper establishes and tests procedures which can determine the electron
energy gap of the high-temperature superconductors using the model
with spinon and holon quasiparticles obeying fractional statistics. A simpler
problem with similar physics, the spin susceptibility spectrum of the spin 1/2
fractional-statistics gas, is studied. Interactions with the density
oscillations of the system substantially decrease the spin gap to a value of
, much less than the mean-field value of
. The lower few Landau levels remain visible, though broadened
and shifted, in the spin susceptibility. As a check of the methods, the
single-particle Green's function of the non-interacting Bose gas viewed in the
fermionic representation, as computed by the same approximation scheme, agrees
well with the exact results. The same mechanism would reduce the gap of the
model without eliminating it.Comment: 35 pages, written in REVTeX, 16 figures available upon request from
[email protected]
The Hydrodynamics Laboratory of the California Institute of Technology
This paper presents a description of the Hydrodynamics
Laboratory and its principal pieces of equipment that have
been developed during the last five years. The field of
investigations to be undertaken by the Laboratory is presented
in general terms
- …
