8,391 research outputs found
Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies
We present a study of 107 galaxies, groups, and clusters spanning ~3 orders
of magnitude in mass, ~5 orders of magnitude in central galaxy star formation
rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the
intracluster medium (ICM), and ~5 orders of magnitude in the central black hole
accretion rate. For each system in this sample, we measure dM/dt using archival
Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by
combining over 330 estimates from dozens of literature sources. With these
data, we estimate the efficiency with which the ICM cools and forms stars,
finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30
Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation
greater than unity, suggesting that the systems with the strongest cool cores
are also cooling more efficiently. We propose that this may be related to, on
average, higher black hole accretion rates in the strongest cool cores, which
could influence the total amount (saturating near the Eddington rate) and
dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt <
30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this
is consistent with star formation being fueled at a low (but dominant) level by
recycled ISM gas in these systems. We find an intrinsic log-normal scatter in
SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly
self-regulated over very long timescales, but can vary dramatically on short
timescales. There is weak evidence that this scatter may be related to the
feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for
which the mechanical feedback power is within a factor of two of the cooling
luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome
Inside the Bondi radius of M87
Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve
the hot gas structure across the Bondi accretion radius of the central
supermassive black hole, a measurement possible in only a handful of systems
but complicated by the bright nucleus and jet emission. By stacking only short
frame-time observations to limit pileup, and after subtracting the nuclear PSF,
we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc
(1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we
detect two significant temperature components, which are consistent with
constant values of 2 keV and 0.9 keV down to 0.15 kpc radius. No evidence was
found for the expected temperature increase within ~0.25 kpc due to the
influence of the SMBH. Within the Bondi radius, the density profile is
consistent with . The lack of a temperature increase inside
the Bondi radius suggests that the hot gas structure is not dictated by the
SMBH's potential and, together with the shallow density profile, shows that the
classical Bondi rate may not reflect the accretion rate onto the SMBH. If this
density profile extends in towards the SMBH, the mass accretion rate onto the
SMBH could be at least two orders of magnitude less than the Bondi rate, which
agrees with Faraday rotation measurements for M87. We discuss the evidence for
outflow from the hot gas and the cold gas disk and for cold feedback, where gas
cooling rapidly from the hot atmosphere could feed the cirumnuclear disk and
fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component
represents ~20% of the total X-ray gas mass and, by losing angular momentum to
the hot gas component, could provide a fuel source of cold clouds within the
Bondi radius.Comment: 14 pages, 8 figures, accepted by MNRA
Mechanical Feedback from Active Galactic Nuclei in Galaxies, Groups, and Clusters
The radiative cooling timescales at the centers of hot atmospheres
surrounding elliptical galaxies, groups, and clusters are much shorter than
their ages. Therefore, hot atmospheres are expected to cool and to form stars.
Cold gas and star formation are observed in central cluster galaxies but at
levels below those expected from an unimpeded cooling flow. X-ray observations
have shown that wholesale cooling is being offset by mechanical heating from
radio active galactic nuclei. Feedback is widely considered to be an important
and perhaps unavoidable consequence of the evolution of galaxies and
supermassive black holes. We show that cooling X-ray atmospheres and the
ensuing star formation and nuclear activity are probably coupled to a
self-regulated feedback loop. While the energetics are now reasonably well
understood, other aspects of feedback are not. We highlight the problems of
atmospheric heating and transport processes, accretion, and nuclear activity,
and we discuss the potential role of black hole spin. We discuss X-ray imagery
showing that the chemical elements produced by central galaxies are being
dispersed on large scales by outflows launched from the vicinity of
supermassive black holes. Finally, we comment on the growing evidence for
mechanical heating of distant cluster atmospheres by radio jets and its
potential consequences for the excess entropy in hot halos and a possible
decline in the number of distant cooling flows.Comment: Accepted for publication in New Journal of Physics Focus Issue on
Clusters of Galaxie
- …
