59,660 research outputs found
Image Properties of Embedded Lenses
We give analytic expressions for image properties of objects seen around
point mass lenses embedded in a flat CDM universe. An embedded lens in
an otherwise homogeneous universe offers a more realistic representation of the
lens's gravity field and its associated deflection properties than does the
conventional linear superposition theory. Embedding reduces the range of the
gravitational force acting on passing light beams thus altering all quantities
such as deflection angles, amplifications, shears and Einstein ring sizes.
Embedding also exhibits the explicit effect of the cosmological constant on
these same lensing quantities. In this paper we present these new results and
demonstrate how they can be used. The effects of embedding on image properties,
although small i.e., usually less than a fraction of a percent, have a more
pronounced effect on image distortions in weak lensing where the effects can be
larger than 10%. Embedding also introduces a negative surface mass density for
both weak and strong lensing, a quantity altogether absent in conventional
Schwarzschild lensing. In strong lensing we find only one additional quantity,
the potential part of the time delay, which differs from conventional lensing
by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
The new tungsten-filament lamp standards of total irradiance
Instrumentation and methods used in establishing tungsten-filament lamp standards of total irradianc
Deliverable 2 (SustainAQ)
The European Project SustainAQ (Framework 6) aims to identify the limiting factors for the sustainable production of aquatic origin food in Eastern Europe. It focuses on the possible use of Recirculation Aquaculture Systems (RAS) as sustainable method for the production of aquatic animals as mentioned in the communication of the European Commission on Aquaculture in 2009. RASs already exist mainly in western countries and proved economically feasible. RASs allow controlling the production process including effluents, biosecurity and escapes. Eastern European countries are facing challenges related to their excessive water use waste emission, and others. Therefore, these countries are potential beneficiaries of improved sustainability through RAS use. This project intends to assess the benefits of introducing and applying RAS for Eastern European aquaculture. This project involves three Western European countries (Norway, the Netherlands and France) and six East European countries (Croatia, Turkey, Romania, Hungary, Czech Republic and Poland). Ten research institutions collaborate in different tasks (coordination, data collection, data analysis, etc.), and nine small-medium enterprises (SME) participate in data mining (Table 1). The present data is therefore based on the situation in those countries during 2006 till 2008 before the report got finally compiled in 2008/2009
Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments
The thermal and chemical evolution of star-forming clouds is studied for
different gas metallicities, Z, using the model of Omukai (2000), updated to
include deuterium chemistry and the effects of cosmic microwave background
(CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z
\~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation
prevents the gas temperature to fall below T_CMB, although this hardly alters
the cloud thermal evolution in low-metallicity gas. From the derived
temperature evolution, we assess cloud/core fragmentation as a function of
metallicity from linear perturbation theory, which requires that the core
elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis
length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given
these assumptions and the initial (gaussian) distribution of E we compute the
fragment mass distribution as a function of metallicity. We find that: (i) For
Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous
studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high
density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading
to low-mass fragments; (iii) The mass fraction in low-mass fragments is
initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues
to grow as Z is increased; (iv) as a result of the two fragmentation modes, a
bimodal mass distribution emerges in 0.01 0.1Z_sun,
the two peaks merge into a singly-peaked mass function which might be regarded
as the precursor of the ordinary Salpeter-like IMF.Comment: 38 pages, 16 figures, ApJ in pres
Cosmic shear surveys
Gravitational weak shear produced by large-scale structures of the universe
induces a correlated ellipticity distribution of distant galaxies. The
amplitude and evolution with angular scale of the signal depend on cosmological
models and can be inverted in order to constrain the power spectrum and the
cosmological parameters. We present our recent analysis of 50 uncorrelated VLT
fields and the very first constrains on () and the nature of
primordial fluctuations based on the join analysis of present-day cosmic shear
surveys.Comment: Latex, 7 pages. To appear in the ESO Proceedings ``Deep Fields'',
Garching Oct 9-12, 200
The Carbon content in the Galactic CygnusX/DR21 star forming region
Observations of Carbon bearing species are among the most important
diagnostic probes of ongoing star formation. CO is a surrogate for H and is
found in the vicinity of star formation sites. There, [CI] emission is thought
to outline the dense molecular cores and extend into the lower density regions,
where the impinging interstellar UV radiation field plays a critical role for
the dissociation and ionization processes. Emission of ionized carbon ([CII])
is found to be even more extended than [CI] and is linking up with the ionized
medium. These different tracers emphasize the importance of multi-wavelength
studies to draw a coherent picture of the processes driving and driven by high
mass star formation. Until now, large scale surveys were only done with low
resolution, such as the COBE full sky survey, or were biased to a few selected
bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader
basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play
a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier,
and A. Heithausen (Springer Verlag
Probing the Mass Fraction of MACHOs in Extragalactic Halos
Current microlensing searches calibrate the mass fraction of the Milky Way
halo which is in the form of Massive Compact Halo Objects (MACHOs). We show
that surveys like the Sloan Digital Sky Survey (SDSS) can probe the same
quantity in halos of distant galaxies. Microlensing of background quasars by
MACHOs in intervening galaxies would distort the equivalent width distribution
of the quasar emission lines by an amplitude that depends on the projected
quasar-galaxy separation. For a statistical sample of detectable at the >2sigma
level out to a quasar-galaxy impact parameter of several tens of kpc, as long
as extragalactic halos are made of MACHOs. Detection of this signal would test
whether the MACHO fraction inferred for the Milky-Way halo is typical of other
galaxies.Comment: 12 pages, 2 figures, submitted to ApJ Letter
Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium
Recent experimental developments of high-intensity, short-pulse XUV light
sources are enhancing our ability to study electron-electron correlations. We
perform time-dependent calculations to investigate the so-called "sequential"
regime (photon energy above 54.4 eV) in the two-photon double ionization of
helium. We show that attosecond pulses allow to induce and probe angular and
energy correlations of the emitted electrons. The final momentum distribution
reveals regions dominated by the Wannier ridge break-up scenario and by
post-collision interaction.Comment: 4 pages, 5 figure
Implications of the isotope effects on the magnetization, magnetic torque and susceptibility
We analyze the magnetization, magnetic torque and susceptibility data of
La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal
3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that
on the anisotropy. Invoking the generic behavior of the anisotropy the doping
dependence of the isotope effects on the critical properties, including Tc,
correlation lengths and magnetic penetration depths are traced back to a change
of the mobile carrier concentration.Comment: 5 pages, 3 figure
- …
