59,660 research outputs found

    Image Properties of Embedded Lenses

    Full text link
    We give analytic expressions for image properties of objects seen around point mass lenses embedded in a flat Λ\LambdaCDM universe. An embedded lens in an otherwise homogeneous universe offers a more realistic representation of the lens's gravity field and its associated deflection properties than does the conventional linear superposition theory. Embedding reduces the range of the gravitational force acting on passing light beams thus altering all quantities such as deflection angles, amplifications, shears and Einstein ring sizes. Embedding also exhibits the explicit effect of the cosmological constant on these same lensing quantities. In this paper we present these new results and demonstrate how they can be used. The effects of embedding on image properties, although small i.e., usually less than a fraction of a percent, have a more pronounced effect on image distortions in weak lensing where the effects can be larger than 10%. Embedding also introduces a negative surface mass density for both weak and strong lensing, a quantity altogether absent in conventional Schwarzschild lensing. In strong lensing we find only one additional quantity, the potential part of the time delay, which differs from conventional lensing by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    The new tungsten-filament lamp standards of total irradiance

    Get PDF
    Instrumentation and methods used in establishing tungsten-filament lamp standards of total irradianc

    Deliverable 2 (SustainAQ)

    Get PDF
    The European Project SustainAQ (Framework 6) aims to identify the limiting factors for the sustainable production of aquatic origin food in Eastern Europe. It focuses on the possible use of Recirculation Aquaculture Systems (RAS) as sustainable method for the production of aquatic animals as mentioned in the communication of the European Commission on Aquaculture in 2009. RASs already exist mainly in western countries and proved economically feasible. RASs allow controlling the production process including effluents, biosecurity and escapes. Eastern European countries are facing challenges related to their excessive water use waste emission, and others. Therefore, these countries are potential beneficiaries of improved sustainability through RAS use. This project intends to assess the benefits of introducing and applying RAS for Eastern European aquaculture. This project involves three Western European countries (Norway, the Netherlands and France) and six East European countries (Croatia, Turkey, Romania, Hungary, Czech Republic and Poland). Ten research institutions collaborate in different tasks (coordination, data collection, data analysis, etc.), and nine small-medium enterprises (SME) participate in data mining (Table 1). The present data is therefore based on the situation in those countries during 2006 till 2008 before the report got finally compiled in 2008/2009

    Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    Full text link
    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.Comment: 38 pages, 16 figures, ApJ in pres

    Cosmic shear surveys

    Get PDF
    Gravitational weak shear produced by large-scale structures of the universe induces a correlated ellipticity distribution of distant galaxies. The amplitude and evolution with angular scale of the signal depend on cosmological models and can be inverted in order to constrain the power spectrum and the cosmological parameters. We present our recent analysis of 50 uncorrelated VLT fields and the very first constrains on (Ωm,σ8\Omega_m,\sigma_8) and the nature of primordial fluctuations based on the join analysis of present-day cosmic shear surveys.Comment: Latex, 7 pages. To appear in the ESO Proceedings ``Deep Fields'', Garching Oct 9-12, 200

    The Carbon content in the Galactic CygnusX/DR21 star forming region

    Full text link
    Observations of Carbon bearing species are among the most important diagnostic probes of ongoing star formation. CO is a surrogate for H2_2 and is found in the vicinity of star formation sites. There, [CI] emission is thought to outline the dense molecular cores and extend into the lower density regions, where the impinging interstellar UV radiation field plays a critical role for the dissociation and ionization processes. Emission of ionized carbon ([CII]) is found to be even more extended than [CI] and is linking up with the ionized medium. These different tracers emphasize the importance of multi-wavelength studies to draw a coherent picture of the processes driving and driven by high mass star formation. Until now, large scale surveys were only done with low resolution, such as the COBE full sky survey, or were biased to a few selected bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen (Springer Verlag

    Probing the Mass Fraction of MACHOs in Extragalactic Halos

    Get PDF
    Current microlensing searches calibrate the mass fraction of the Milky Way halo which is in the form of Massive Compact Halo Objects (MACHOs). We show that surveys like the Sloan Digital Sky Survey (SDSS) can probe the same quantity in halos of distant galaxies. Microlensing of background quasars by MACHOs in intervening galaxies would distort the equivalent width distribution of the quasar emission lines by an amplitude that depends on the projected quasar-galaxy separation. For a statistical sample of detectable at the >2sigma level out to a quasar-galaxy impact parameter of several tens of kpc, as long as extragalactic halos are made of MACHOs. Detection of this signal would test whether the MACHO fraction inferred for the Milky-Way halo is typical of other galaxies.Comment: 12 pages, 2 figures, submitted to ApJ Letter

    Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium

    Full text link
    Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (photon energy above 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to induce and probe angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction.Comment: 4 pages, 5 figure

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure
    corecore