753 research outputs found
Evolution from a nodeless gap to d(x2-y2) form in underdoped La(2-x)SrxCuO4
Using angle-resolved photoemission (ARPES), it is revealed that the
low-energy electronic excitation spectra of highly underdoped superconducting
and non-superconducting La(2-x)SrxCuO4 cuprates are gapped along the entire
underlying Fermi surface at low temperatures. We show how the gap function
evolves to a d(x2-y2) form as increasing temperature or doping, consistent with
the vast majority of ARPES studies of cuprates. Our results provide essential
information for uncovering the symmetry of the order parameter(s) in strongly
underdoped cuprates, which is a prerequisite for understanding the pairing
mechanism and how superconductivity emerges from a Mott insulator.Comment: 5 pages, 4 figure
Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization
We calculate the dc Josephson current for two types of
superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first
type is a S/F/S junction. On the basis of the Eilenberger equation, the
Josephson current is calculated for an arbitrary impurity concentration. If the expression for the Josephson critical current is reduced
to that which can be obtained from the Usadel equation ( is the exchange
energy, is the momentum relaxation time). In the opposite limit
the superconducting condensate oscillates with period and
penetrates into the F region over distances of the order of the mean free path
. For this kind of junctions we also calculate in the case when the F
layer presents a nonhomogeneous (spiral) magnetic structure with the period
. It is shown that for not too low temperatures, the -state which
occurs in the case of a homogeneous magnetization (Q=0) may disappear even at
small values of . In this nonhomogeneous case, the superconducting
condensate has a nonzero triplet component and can penetrate into the F layer
over a long distance of the order of . The junction
of the second type consists of two S/F bilayers separated by a thin insulating
film. It is shown that the critical Josephson current depends on the
relative orientation of the effective exchange field of the bilayers. In
the case of an antiparallel orientation, increases with increasing .
We establish also that in the F film deposited on a superconductor, the
Meissner current created by the internal magnetic field may be both diamagnetic
or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.
Bulk electronic structure of superconducting LaRu2P2 single crystals measured by soft x-ray angle-resolved photoemission spectroscopy
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES)
study of the stoichiometric pnictide superconductor LaRu2P2. The observed
electronic structure is in good agreement with density functional theory (DFT)
calculations. However, it is significantly different from its counterpart in
high-temperature superconducting Fe-pnictides. In particular the bandwidth
renormalization present in the Fe-pnictides (~2 - 3) is negligible in LaRu2P2
even though the mass enhancement is similar in both systems. Our results
suggest that the superconductivity in LaRu2P2 has a different origin with
respect to the iron pnictides. Finally we demonstrate that the increased
probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is
essential in determining the bulk electronic structure in the experiment.Comment: 4 pages, 4 figures, 1 supplemental material. Accepted for publication
in Physical Review Letter
Cryptoferromagnetic state in superconductor-ferromagnet multilayers
We study a possibility of a non-homogeneous magnetic order
(cryptoferromagnetic state) in heterostructures consisting of a bulk
superconductor and a ferromagnetic thin layer that can be due to the influence
of the superconductor. The exchange field in the ferromagnet may be strong and
exceed the inverse mean free time. A new approach based on solving the
Eilenberger equations in the ferromagnet and the Usadel equations in the
superconductor is developed. We derive a phase diagram between the
cryptoferromagnetic and ferromagnetic states and discuss the possibility of an
experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur
Energy and symmetry of excitations in undoped layered cuprates measured by Cu resonant inelastic x-ray scattering
We measured high resolution Cu edge resonant inelastic x-ray scattering
(RIXS) of the undoped cuprates LaCuO, SrCuOCl, CaCuO
and NdBaCuO. The dominant spectral features were assigned to
excitations and we extensively studied their polarization and scattering
geometry dependence. In a pure ionic picture, we calculated the theoretical
cross sections for those excitations and used them to fit the experimental data
with excellent agreement. By doing so, we were able to determine the energy and
symmetry of Cu-3 states for the four systems with unprecedented accuracy and
confidence. The values of the effective parameters could be obtained for the
single ion crystal field model but not for a simple two-dimensional cluster
model. The firm experimental assessment of excitation energies carries
important consequences for the physics of high superconductors. On one
hand, having found that the minimum energy of orbital excitation is always
eV, i.e., well above the mid-infrared spectral range, leaves to
magnetic excitations (up to 300 meV) a major role in Cooper pairing in
cuprates. On the other hand, it has become possible to study quantitatively the
effective influence of excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl
- …
