2,230 research outputs found
Spin-Current Relaxation Time in Spin-Polarized Heisenberg Paramagnets
We study the spatial Fourier transform of the spin correlation function
G_q(t) in paramagnetic quantum crystals by direct simulation of a 1d lattice of
atoms interacting via a nearest-neighbor Heisenberg exchange Hamiltonian. Since
it is not practical to diagonalize the s=1/2 exchange Hamiltonian for a lattice
which is of sufficient size to study long-wavelength (hydrodynamic)
fluctuations, we instead study the s -> infinity limit and treat each spin as a
vector with a classical equation of motion. The simulations give a detailed
picture of the correlation function G_q(t) and its time derivatives. At high
polarization, there seems to be a hierarchy of frequency scales: the local
exchange frequency, a wavelength-independent relaxation rate 1/tau that
vanishes at large polarization P ->1, and a wavelength-dependent spin-wave
frequency proportional to q^2. This suggests a form for the correlation
function which modifies the spin diffusion coefficients obtained in a moments
calculation by Cowan and Mullin, who used a standard Gaussian ansatz for the
second derivative of the correlation function.Comment: 6 pages, 3 figure
Complex-based analysis of dysregulated cellular processes in cancer
Background: Differential expression analysis of (individual) genes is often
used to study their roles in diseases. However, diseases such as cancer are a
result of the combined effect of multiple genes. Gene products such as proteins
seldom act in isolation, but instead constitute stable multi-protein complexes
performing dedicated functions. Therefore, complexes aggregate the effect of
individual genes (proteins) and can be used to gain a better understanding of
cancer mechanisms. Here, we observe that complexes show considerable changes in
their expression, in turn directed by the concerted action of transcription
factors (TFs), across cancer conditions. We seek to gain novel insights into
cancer mechanisms through a systematic analysis of complexes and their
transcriptional regulation.
Results: We integrated large-scale protein-interaction (PPI) and
gene-expression datasets to identify complexes that exhibit significant changes
in their expression across different conditions in cancer. We devised a
log-linear model to relate these changes to the differential regulation of
complexes by TFs. The application of our model on two case studies involving
pancreatic and familial breast tumour conditions revealed: (i) complexes in
core cellular processes, especially those responsible for maintaining genome
stability and cell proliferation (e.g. DNA damage repair and cell cycle) show
considerable changes in expression; (ii) these changes include decrease and
countering increase for different sets of complexes indicative of compensatory
mechanisms coming into play in tumours; and (iii) TFs work in cooperative and
counteractive ways to regulate these mechanisms. Such aberrant complexes and
their regulating TFs play vital roles in the initiation and progression of
cancer.Comment: 22 pages, BMC Systems Biolog
Chemistry in Infrared Dark Cloud Clumps: a Molecular Line Survey at 3 mm
We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159
clumps, in high-density molecular tracers at 3 mm using the 22-meter ATNF Mopra
Telescope located in Australia. After determining kinematic distances, we
eliminated clumps that are not located in IRDCs and clumps with a separation
between them of less than one Mopra beam. Our final sample consists of 92 IRDC
clumps. The most commonly detected molecular lines are (detection rates higher
than 8%): N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We
investigate the behavior of the different molecular tracers and look for
chemical variations as a function of an evolutionary sequence based on Spitzer
IRAC and MIPS emission. We find that the molecular tracers behave differently
through the evolutionary sequence and some of them can be used to yield useful
relative age information. The presence of HNC and N2H+ lines do not depend on
the star formation activity. On the other hand, HC3N, HNCO, and SiO are
predominantly detected in later stages of evolution. Optical depth calculations
show that in IRDC clumps the N2H+ line is optically thin, the C2H line is
moderately optically thick, and HNC and HCO+ are optically thick. The HCN
hyperfine transitions are blended, and, in addition, show self-absorbed line
profiles and extended wing emission. These factors combined prevent the use of
HCN hyperfine transitions for the calculation of physical parameters. Total
column densities of the different molecules, except C2H, increase with the
evolutionary stage of the clumps. Molecular abundances increase with the
evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abudance
ratios act as chemical clocks, increasing with the evolution of the clumps.Comment: Accepted to ApJ. 29 page
Observation of the Crab Nebula Gamma-Ray Emission Above 220 Gev by the Cat Cherenkov Imaging Telescope
The CAT imaging telescope, recently built on the site of the former solar
plant Themis (French Pyrenees), observed gamma-rays from the Crab nebula from
October 1996 to March 1997. This steady source, often considered as the
standard candle of very-high-energy gamma-ray astronomy, is used as a test-beam
to probe the performances of the new telescope, particularly its energy
threshold (220 GeV at 20 degrees zenith angle) and the stability of its
response. Due to the fine-grain camera, an accurate analysis of the
longitudinal profiles of shower images is performed, yielding the source
position in two dimensions for each individual shower.Comment: 5 pages, 3 figures, Tex, contribution to 25th ICRC Durba
Decoupling algorithms from schedules for easy optimization of image processing pipelines
Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism.
We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code.
We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System
The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a
very-high-definition camera (546 fast phototubes with 0.12 degrees spacing
surrounded by 54 larger tubes in two guard rings) started operation in Autumn
1996 on the site of the former solar plant Themis (France). Using the
atmospheric Cherenkov technique, it detects and identifies very high energy
gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has
detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in
detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
Castaing Instability and Precessing Domains in Confined Alkali Gases
We explore analogy between two-component quantum alkali gases and
spin-polarized helium systems. Recent experiments in trapped gases are put into
the frame of the existing theory for Castaing instability in transverse channel
and formation of homogeneous precessing domains in spin-polarized systems.
Analogous effects have already been observed in spin-polarized and
mixtures systems. The threshold effect of the confining
potential on the instability is analyzed. New experimental possibilities for
observation of transverse instability in a trap are discussed.Comment: 6 RevTex pages, no figure
Temporal light field reconstruction for rendering distribution effects
Traditionally, effects that require evaluating multidimensional integrals for each pixel, such as motion blur, depth of field, and soft shadows, suffer from noise due to the variance of the high-dimensional integrand. In this paper, we describe a general reconstruction technique that exploits the anisotropy in the temporal light field and permits efficient reuse of samples between pixels, multiplying the effective sampling rate by a large factor. We show that our technique can be applied in situations that are challenging or impossible for previous anisotropic reconstruction methods, and that it can yield good results with very sparse inputs. We demonstrate our method for simultaneous motion blur, depth of field, and soft shadows
- …
