372 research outputs found

    The impact of poor cementing casing damage: A numerical simulation study

    Get PDF
    A good knowledge of the parameters causing casing damage is critically important due to vital role of casing during the life of a well. Cement sheath, which fills in the gap between the casing and wellbore wall, has a profound effect on the resistance of the casing against applied loads. Most of the empirical equations proposed to estimate the collapse resistance of casing ignore the effects of the cement sheath on collapse resistance and rather assume uniform loading on the casing. This paper aims to use numerical modeling to show how a bad cementing job may lead to casing damage. Two separate cases were simulated where the differences between good and bad cementation on casing resistance were studied. In both cases, the same values of stresses were applied at the outer boundary of the models. The results revealed that a good cementing job can provide a perfect sheath against the tangential stress induced by far-field stresses and reduce the chance of casing to be damaged

    A methodology for wellbore stability analysis of drilling into presalt formations: A case study from southern Iran

    Get PDF
    Drilling into presalt formations has been a long-standing issue due to the rapid changes in the diameter of the borehole during drilling operations either because of creep or wash-out dissolution. There have been many studies on characterization of salts, with many mathematical models being presented to estimate the pressure induced due to the squeezing salt sheets. However, the results of none of these models have been fully validated against real field data and some recommendations have been made based on numerical simulations. In this study, attempts were made to introduce a methodology based on damage mechanics for wellbore stability analysis of a wells drilled in the southern part of Iran. The results obtained indicated that the presence of a thick salt layer in the well has resulted in significant wellbore closure in the intervals above the reservoir section. It was also found that the salt exhibits viscoelastic behaviour during drilling due to the homogeneous temperature which has not reached the threshold limit of viscoplastic boundary. A complicated change in the stress regime was also observed which could be linked to the existence of the thick salt layer or presences of a fault crossing the well. Therefore, it is recommended to further validate this model in other wells using the methodology presented

    A review on cement degradation under CO2-rich environment of sequestration projects

    Get PDF
    Global warming arising from the release of greenhouse gasses into the atmosphere is one of the biggest issues attracting a lot of attention. One of the conventional problems in sequestration projects is the degradation of Portland cement due to its exposure to supercritical CO2. This paper gives a review on the laboratory work performed to understand changes in the mechanical and transport properties of cement when it is in a CO2 rich environment. The results obtained indicated that pozzolanic material could be useful in enhancing the cement resistance against CO2, although more studies are still required to confirm this conclusion

    Levels of Glucose-6-phosphate Dehydrogenase in Type 1 Diabetes Mellitus patients with Nephropathy and Cardiovascular disease complication

    Get PDF
    The aim of this study is to evaluate oxidative stress in diabetes mellitus (DM) Type1 by the measurement of Glucose-6-phosphate Dehydrogenase (G-6-PD), an enzyme expressed in human RBCs, is important in the generation of reduced glutathione which is the key product in oxidative stress controls. The Study was carried on 80 samples of blood and serum of National Diabetes Center (NDC). The study groups under fasting conditions and they divided as:20 samples of diabetes mellitus patients without complications and 20 samples of diabetes mellitus with cardiovascular (CV) complications and 20 samples of diabetes mellitus with Nephropathy (Neph) complications compared with 20 control group with average age (13-67) years.. The results showed an elevation in the lipid profile and urea levels in patients groups compared with control group and a decrease in glucose-6-phosphate Dehydrogenase, HDL levels in all patients groups compared with control group

    Imaging algorithm for COVID-19: A practical approach

    Get PDF
    © 2020 Elsevier Inc. The global pandemic of COVID-19 pneumonia caused by the novel coronavirus (SARS-CoV-2) has strained healthcare resources across the world with emerging challenges of mass testing, resource allocation and management. While reverse transcriptase-polymerase chain reaction (RT-PCR) test is the most commonly utilized test and considered the current gold standard for diagnosis, the role of chest imaging has been highlighted by several studies demonstrating high sensitivity of computed tomography (CT). Many have suggested using CT chest as a first-line screening tool for the diagnosis of COVID-19. However, with advancement of laboratory testing and challenges in obtaining a CT scan without significant risk to healthcare providers, the role of imaging in diagnosis has been questioned. Several imaging societies have released consensus statements and guidelines on utilizing imaging resources and optimal reporting. In this review, we highlight the current evidence on various modalities in thoracic imaging for the diagnosis of COVID-19 and describe an algorithm on how to use these resources in an optimal fashion in accordance with the guidelines and statements released by major imaging societies

    Control of brine composition over reactive transport processes in calcium carbonate rock dissolution: Time-lapse imaging of evolving dissolution patterns

    Get PDF
    This study investigates the impact of brine composition—specifically calcium ions and NaCl-based salinity—on the development of dissolution features in Ketton, a porous calcium carbonate rock. Utilizing a laboratory XMT (X-ray microtomography) scanner, we captured time-lapse in situ images of Ketton samples throughout various dissolution experiments, conducting four distinct flow-through experiments with differing brine solutions at a flow rate of 0.26 ml min⁻1. The scans yielded a voxel size of 6 μm, enabling the assessment of the temporal evolution of porosity and pore structure through image analysis and permeability evaluations via single-phase fluid flow simulations employing direct numerical solutions and network modeling, as opposed to direct measurement.Time-lapse imaging technique has delineated the extent to which the concentrations of CaCl₂ and NaCl in the injecting solution control the structural evolution of dissolution patterns, subsequently triggering the development of characteristic dissolution pattern. The inflow solution with no Ca2+ ions and with the minimal salt content manifested maximum dissolution near the sample inlet, coupled with the formation of numerous dissolution channels, i.e., wormholes. Conversely, solutions with a trace amount of Ca2⁺ ions induced focused dissolution, resulting in the formation of sparsely located channels. Inflow solutions with high concentrations of both Ca2⁺ ions and salt facilitated uniformly dispersed dissolution, primarily within microporous domains, initiating particle detachment and displacement and leading to localized pore-clogging. The relative increase in permeability, in each experiment, was correlated with the developed dissolution pattern. It was discerned that varying ratios of salt and calcium concentrations in the injected solution systematically influenced image-based permeability simulations and porosity, allowing for the depiction of an empirical porosity-permeability relationship

    The impact of pore-throat shape evolution during dissolution on carbonate rock permeability: pore network modelling and experiments

    Get PDF
    Pore network model simulation (PNM) is an important method to simulate reactive transport processes in porous media and to investigate constitutive relationships between permeability and porosity that can be implemented in continuum-scale reactive-transport modeling. The existing reactive transport pore network models (rtPNMs) assume that the initially cylindrical pore throats maintain their shape and pore throat conductance is updated using a form of Hagen-Poiseuille relation. However, in the context of calcite dissolution, earlier studies have shown that during dissolution, pore throats can attain a spectrum of shapes, depending upon the imposed reactive-flow conditions (Agrawal et al., 2020). In the current study, we derived new constitutive relations for the calculation of conductance as a function of pore throat volume and shape evolution for a range of imposed flow and reaction conditions. These relations were used to build animproved new reactive pore network model (nrtPNM). Using the new model, the porosity-permeability changes were simulated and compared against the existing pore network models. In order to validate the reactive transport pore network model, we conducted two sets of flow-through experiments on two Ketton limestone samples. Acidic solutions (pH 3.0) were injected at two Darcy velocities i.e., 7.3 x 10(-4) and 1.5 x 10(-4) m.s(-1) while performing X-ray micro-CT scanning. Experimental values of the changes in sample permeability were estimated in two independent ways: through PNM flow simulation and through Direct Numerical Simulation. Both approaches used images of the samples from the beginning and the end of experiments. Extracted pore networks, obtained from the micro-CT images of the sample from the beginning of the experiment, were used for reactive transport PNMs (rtPNM and nrtPNM). We observed that for the experimental conditions, most of the pore throats maintained the initially prescribed cylindrical shape such that both rtPNM and nrtPNM showed a similar evolution of porosity and permeability. This was found to be in reasonable agreement with the porosity and permeability changes observed in the experiment. Next, we have applied a range of flow and reaction regimes to compare permeability evolutions between rtPNM and nrtPNM. We found that for certain dissolution regimes, neglecting the evolution of the pore throat shape in the pore network can lead to an overestimation of up to 27% in the predicted permeability values and an overestimation of over 50% in the fitted exponent for the porosity-permeability relations. In summary, this study showed that while under high flow rate conditions the rtPNM model is accurate enough, it overestimates permeability under lower flow rates

    Primary recovery factor as a function of production rate: implications for conventional reservoirs with different drive mechanisms

    Get PDF
    This study evaluates the dependency of production rate on the recovery of hydrocarbon from conventional reservoirs using MBAL simulator. The results indicated that the recoveries are sensitive to the production rate in almost all hydrocarbon reservoirs. It was also found that the recovery of volumetric gas drive reservoirs is not impacted by the production rate. In fact, any increase in the production rate improves gas recovery in weak and strong water drive reservoirs. Moreover, increasing the production rate in oil reservoirs decreases the recovery with a significant effect observed in the weak water drive reservoirs. The results of this study demonstrate the need for implementing an effective reservoir management in order to obtain a maximum recovery

    Control of brine composition over reactive transport processes in calcium carbonate rock dissolution:: Time-lapse imaging of evolving dissolution patterns

    Get PDF
    This study investigates the impact of brine composition—specifically calcium ions and NaCl-based salinity—on the development of dissolution features in Ketton, a porous calcium carbonate rock. Utilizing a laboratory XMT (X-ray microtomography) scanner, we captured time-lapse in situ images of Ketton samples throughout various dissolution experiments, conducting four distinct flow-through experiments with differing brine solutions at a flow rate of 0.26 ml min⁻1. The scans yielded a voxel size of 6 μm, enabling the assessment of the temporal evolution of porosity and pore structure through image analysis and permeability evaluations via single-phase fluid flow simulations employing direct numerical solutions and network modeling, as opposed to direct measurement. Time-lapse imaging technique has delineated the extent to which the concentrations of CaCl₂ and NaCl in the injecting solution control the structural evolution of dissolution patterns, subsequently triggering the development of characteristic dissolution pattern. The inflow solution with no Ca2+ ions and with the minimal salt content manifested maximum dissolution near the sample inlet, coupled with the formation of numerous dissolution channels, i.e., wormholes. Conversely, solutions with a trace amount of Ca2⁺ ions induced focused dissolution, resulting in the formation of sparsely located channels. Inflow solutions with high concentrations of both Ca2⁺ ions and salt facilitated uniformly dispersed dissolution, primarily within microporous domains, initiating particle detachment and displacement and leading to localized pore-clogging. The relative increase in permeability, in each experiment, was correlated with the developed dissolution pattern. It was discerned that varying ratios of salt and calcium concentrations in the injected solution systematically influenced image-based permeability simulations and porosity, allowing for the depiction of an empirical porosity-permeability relationship

    Awareness and Use of Benzodiazepines in Healthy Volunteers and Ambulatory Patients Visiting a Tertiary Care Hospital: A Cross Sectional Survey

    Get PDF
    Background: Indiscriminate prescription of Benzodiazepines in Pakistan and subsequent availability over-the-counter without prescription is a major public health problem, requiring systematic inquiry through research. Additionally, there is limited data on the awareness and use of Benzodiazepines from developing countries making it impossible to devise meaningful health policies. Methodology/Principal Findings: This was an Observational, Cross-Sectional study. conducted at Aga Khan University. A total of 475 (58.5 % males, 41.5 % females) people visiting a tertiary care hospital were interviewed by means of a structured questionnaire. The results showed that majority of population was aware of one or more Benzodiazepines (80.4%) and 30.4 % had used them at some point in life. 42.4 % of the users had been using it for more than a year. Commonest reason for use was sleep disturbance. Frequency of usage was higher for females, married individuals, educated (.Grade12), high socioeconomic status and housewives. More (59%) were prescribed than not and of them most by GP (58.5%). Only 36.5% of them were particularly told about the long-term addiction potential by the use of these drugs. Conclusion: Easy availability, access to re-fills without prescription and self prescription compounded with the lack of understanding of abuse potential of benzodiazepines constitutes a significant problem demanding serious consideratio
    corecore