172 research outputs found

    Global Equation of State of two-dimensional hard sphere systems

    Full text link
    Hard sphere systems in two dimensions are examined for arbitrary density. Simulation results are compared to the theoretical predictions for both the low and the high density limit, where the system is either disordered or ordered, respectively. The pressure in the system increases with the density, except for an intermediate range of volume fractions 0.65ν0.750.65 \le \nu \le 0.75, where a disorder-order phase transition occurs. The proposed {\em global equation of state} (which describes the pressure {\em for all densities}) is applied to the situation of an extremely dense hard sphere gas in a gravitational field and shows reasonable agreement with both experimental and numerical data.Comment: 4 pages, 2 figure

    Liquid-Solid Transition of Hard Spheres Under Gravity

    Full text link
    We investigate the liquid-solid transition of two dimensional hard spheres in the presence of gravity. We determine the transition temperature and the fraction of particles in the solid regime as a function of temperature via Even-Driven molecular dynamics simulations and compare them with the theoretical predictions. We then examine the configurational statistics of a vibrating bed from the view point of the liquid-solid transition by explicitly determining the transition temperature and the effective temperature, T, of the bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure

    Correlation functions near Modulated and Rough Surfaces

    Get PDF
    In a system with long-ranged correlations, the behavior of correlation functions is sensitive to the presence of a boundary. We show that surface deformations strongly modify this behavior as compared to a flat surface. The modified near surface correlations can be measured by scattering probes. To determine these correlations, we develop a perturbative calculation in the deformations in height from a flat surface. Detailed results are given for a regularly patterned surface, as well as for a self-affinely rough surface with roughness exponent ζ\zeta. By combining this perturbative calculation in height deformations with the field-theoretic renormalization group approach, we also estimate the values of critical exponents governing the behavior of the decay of correlation functions near a self-affinely rough surface. We find that for the interacting theory, a large enough ζ\zeta can lead to novel surface critical behavior. We also provide scaling relations between roughness induced critical exponents for thermodynamic surface quantities.Comment: 31 pages, 2 figure

    Theoretical description of phase coexistence in model C60

    Full text link
    We have investigated the phase diagram of the Girifalco model of C60 fullerene in the framework provided by the MHNC and the SCOZA liquid state theories, and by a Perturbation Theory (PT), for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys. 118:304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties. Then we have determined the phase diagram of the model, by using either the SCOZA, or the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate. All results are discussed in terms of the basic assumptions underlying each theory. We have selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. The overall results appear as a robust benchmark for further theoretical investigations on higher order C(n>60) fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.

    Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions. Application to protein crystallization

    Full text link
    We have studied a model of a complex fluid consisting of particles interacting through a hard core and a short range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid, perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we determine both the equilibrium phase diagram of the system and the lines of equilibrium between the supercooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with depletion forces, through particle gels, nano-particle aggregation, and globular protein crystallization.Comment: 20 pages, 10 figure

    Analysis of the modes of energy consumption of the complex of an incoherent scattering of the institute of ionosphere of national academy of sciences and the ministry of education and science of Ukraine

    Get PDF
    У даній статті представлені результати аналізу режимів енергоспоживання комплексу некогерентного розсіяння Інституту іоносфери НАН і МОН України з метою вирішення проблеми підвищення енергоефективності науково-дослідного комплексу та створення енергоефективної системи електропостачання, яка забезпечить стійку роботу наукового обладнання для виконання дослідницьких програм НАН України. Описана система електроживлення комплексу та режими енергоспоживання комплексу. Описано пристрої радарної системи, а також найбільш потужні споживачі електроенергії, які споживають електроенергію на експериментальні і господарські потреби. Проаналізовано енергоспоживання комплексу некогерентного розсіяння за 2013 р. Отримано і представлено графіки середньої споживаної потужності (середньодобовий показник) і середньої споживаної потужності в режимі вимірювань. Описана доцільність проведення робіт з оптимізації енергопостачання науково-дослідного комплексу Інституту іоносфери. Запропоновано можливі заходи для зниження економічної вартості проведення експериментів з дослідження іоносфери науково-дослідного комплексу некогерентного розсіяння. Проведено аналіз робіт сучасних авторів з метою показати, що підвищення ефективності функціонування систем електропостачання є актуальною проблемою сучасних досліджень.This article presents the results of the analysis of the energy consumption modes of the incoherent scattering complex of the Institute of Ionosphere of the National Academy of Sciences and the Ministry of Education and Science of Ukraine to solve the problem of increasing the energy efficiency of a research complex and creating an energy efficient power supply system that will ensure the sustainability of scientific equipment for research programs of the National Academy of Sciences of Ukraine. The system of power supply of the complex and modes of power consumption of the complex are described. The devices of the radar system are described, as well as the most powerful consumers of electricity, which consume electricity for experimental and economic needs. The energy consumption of the incoherent scattering complex in 2013 is analyzed. Graphs of the average power consumption (daily average) and average power consumption in measurement modes were obtained and presented. The feasibility of work to optimize the energy supply of the research complex of the institute of the ionosphere is described. Possible measures are proposed to reduce the economic cost of conducting experiments on the study of the ionosphere of an incoherent scattering research complex. The analysis of the works of modern authors i s carried out in order to show that increasing the efficiency of the power supply systems is an actual problem of modern research

    Myeloablative conditioning for allo-HSCT in pediatric ALL: FTBI or chemotherapy?—A multicenter EBMT-PDWP study

    Get PDF
    Although most children with acute lymphoblastic leukemia (ALL) receive fractionated total body irradiation (FTBI) as myeloablative conditioning (MAC) for allogeneic hematopoietic stem cell transplantation (allo-HSCT), it is an important matter of debate if chemotherapy can effectively replace FTBI. To compare outcomes after FTBI versus chemotherapy-based conditioning (CC), we performed a retrospective EBMT registry study. Children aged 2-18 years after MAC for first allo-HSCT of bone marrow (BM) or peripheral blood stem cells (PBSC) from matched-related (MRD) or unrelated donors (UD) in first (CR1) or second remission (CR2) between 2000 and 2012 were included. Propensity score weighting was used to control pretreatment imbalances of the observed variables. 3.054 patients were analyzed. CR1 (1.498): median follow-up (FU) after FTBI (1.285) and CC (213) was 6.8 and 6.1 years. Survivals were not significantly different. CR2 (1.556): median FU after FTBI (1.345) and CC (211) was 6.2 years. Outcomes after FTBI were superior as compared with CC with regard to overall survival (OS), leukemia-free survival (LFS), relapse incidence (RI), and nonrelapse mortality (NRM). However, we must emphasize the preliminary character of the results of this retrospective "real-world-practice" study. These findings will be prospectively assessed in the ALL SCTped 2012 FORUM trial.Transplantation and immunomodulatio
    corecore