172 research outputs found
Global Equation of State of two-dimensional hard sphere systems
Hard sphere systems in two dimensions are examined for arbitrary density.
Simulation results are compared to the theoretical predictions for both the low
and the high density limit, where the system is either disordered or ordered,
respectively. The pressure in the system increases with the density, except for
an intermediate range of volume fractions , where a
disorder-order phase transition occurs. The proposed {\em global equation of
state} (which describes the pressure {\em for all densities}) is applied to the
situation of an extremely dense hard sphere gas in a gravitational field and
shows reasonable agreement with both experimental and numerical data.Comment: 4 pages, 2 figure
Liquid-Solid Transition of Hard Spheres Under Gravity
We investigate the liquid-solid transition of two dimensional hard spheres in
the presence of gravity. We determine the transition temperature and the
fraction of particles in the solid regime as a function of temperature via
Even-Driven molecular dynamics simulations and compare them with the
theoretical predictions. We then examine the configurational statistics of a
vibrating bed from the view point of the liquid-solid transition by explicitly
determining the transition temperature and the effective temperature, T, of the
bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure
Correlation functions near Modulated and Rough Surfaces
In a system with long-ranged correlations, the behavior of correlation
functions is sensitive to the presence of a boundary. We show that surface
deformations strongly modify this behavior as compared to a flat surface. The
modified near surface correlations can be measured by scattering probes. To
determine these correlations, we develop a perturbative calculation in the
deformations in height from a flat surface. Detailed results are given for a
regularly patterned surface, as well as for a self-affinely rough surface with
roughness exponent . By combining this perturbative calculation in
height deformations with the field-theoretic renormalization group approach, we
also estimate the values of critical exponents governing the behavior of the
decay of correlation functions near a self-affinely rough surface. We find that
for the interacting theory, a large enough can lead to novel surface
critical behavior. We also provide scaling relations between roughness induced
critical exponents for thermodynamic surface quantities.Comment: 31 pages, 2 figure
Theoretical description of phase coexistence in model C60
We have investigated the phase diagram of the Girifalco model of C60
fullerene in the framework provided by the MHNC and the SCOZA liquid state
theories, and by a Perturbation Theory (PT), for the free energy of the solid
phase. We present an extended assessment of such theories as set against a
recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys.
118:304 (2003)]. We have compared the theoretical predictions with the
corresponding simulation results for several thermodynamic properties. Then we
have determined the phase diagram of the model, by using either the SCOZA, or
the MHNC, or the PT predictions for one of the coexisting phases, and the
simulation data for the other phase, in order to separately ascertain the
accuracy of each theory. It turns out that the overall appearance of the phase
portrait is reproduced fairly well by all theories, with remarkable accuracy as
for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA
results for the liquid-vapor coexistence, as well as for the corresponding
critical points, are quite accurate. All results are discussed in terms of the
basic assumptions underlying each theory. We have selected the MHNC for the
fluid and the first-order PT for the solid phase, as the most accurate tools to
investigate the phase behavior of the model in terms of purely theoretical
approaches. The overall results appear as a robust benchmark for further
theoretical investigations on higher order C(n>60) fullerenes, as well as on
other fullerene-related materials, whose description can be based on a
modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.
Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions. Application to protein crystallization
We have studied a model of a complex fluid consisting of particles
interacting through a hard core and a short range attractive potential of both
Yukawa and square-well form. Using a hybrid method, including a self-consistent
and quite accurate approximation for the liquid integral equation in the case
of the Yukawa fluid, perturbation theory to evaluate the crystal free energies,
and mode-coupling theory of the glass transition, we determine both the
equilibrium phase diagram of the system and the lines of equilibrium between
the supercooled fluid and the glass phases. For these potentials, we study the
phase diagrams for different values of the potential range, the ratio of the
range of the interaction to the diameter of the repulsive core being the main
control parameter. Our arguments are relevant to a variety of systems, from
dense colloidal systems with depletion forces, through particle gels,
nano-particle aggregation, and globular protein crystallization.Comment: 20 pages, 10 figure
Analysis of the modes of energy consumption of the complex of an incoherent scattering of the institute of ionosphere of national academy of sciences and the ministry of education and science of Ukraine
У даній статті представлені результати аналізу режимів енергоспоживання комплексу некогерентного розсіяння Інституту іоносфери НАН і МОН України з метою вирішення проблеми підвищення енергоефективності науково-дослідного комплексу та створення енергоефективної системи електропостачання, яка забезпечить стійку роботу наукового обладнання для виконання дослідницьких програм НАН України. Описана система електроживлення комплексу та режими енергоспоживання комплексу. Описано пристрої радарної системи, а також найбільш потужні споживачі електроенергії, які споживають електроенергію на експериментальні і господарські потреби. Проаналізовано енергоспоживання комплексу некогерентного розсіяння за 2013 р. Отримано і представлено графіки середньої споживаної потужності (середньодобовий показник) і середньої споживаної потужності в режимі вимірювань. Описана доцільність проведення робіт з оптимізації енергопостачання науково-дослідного комплексу Інституту іоносфери. Запропоновано можливі заходи для зниження економічної вартості проведення експериментів з дослідження іоносфери науково-дослідного комплексу некогерентного розсіяння. Проведено аналіз робіт сучасних авторів з метою показати, що підвищення ефективності функціонування систем електропостачання є актуальною проблемою сучасних досліджень.This article presents the results of the analysis of the energy consumption modes of the incoherent scattering complex of the Institute of Ionosphere of the National Academy of Sciences and the Ministry of Education and Science of Ukraine to solve the problem of increasing the energy efficiency of a research complex and creating an energy efficient power supply system that will ensure the sustainability of scientific equipment for research programs
of the National Academy of Sciences of Ukraine. The system of power supply of the complex and modes of power consumption of the complex are described. The devices of the radar system are described, as well as the most powerful consumers of electricity, which consume electricity for experimental and economic needs. The energy consumption of the incoherent scattering complex in 2013 is analyzed. Graphs of the average power consumption (daily average) and average power consumption in measurement modes were obtained and presented. The feasibility of work to optimize the energy supply of the research complex of the institute of the ionosphere is described. Possible measures are proposed to reduce the economic cost of conducting experiments on the study of the ionosphere of an incoherent scattering research complex. The analysis of the works of modern authors i s
carried out in order to show that increasing the efficiency of the power supply systems is an actual problem of modern research
Nonconstrictive epicarditis mimicking a cardiac mass in a 71-year-old Caucasian man: a case report and review of the literature
Myeloablative conditioning for allo-HSCT in pediatric ALL: FTBI or chemotherapy?—A multicenter EBMT-PDWP study
Although most children with acute lymphoblastic leukemia (ALL) receive fractionated total body irradiation (FTBI) as myeloablative conditioning (MAC) for allogeneic hematopoietic stem cell transplantation (allo-HSCT), it is an important matter of debate if chemotherapy can effectively replace FTBI. To compare outcomes after FTBI versus chemotherapy-based conditioning (CC), we performed a retrospective EBMT registry study. Children aged 2-18 years after MAC for first allo-HSCT of bone marrow (BM) or peripheral blood stem cells (PBSC) from matched-related (MRD) or unrelated donors (UD) in first (CR1) or second remission (CR2) between 2000 and 2012 were included. Propensity score weighting was used to control pretreatment imbalances of the observed variables. 3.054 patients were analyzed. CR1 (1.498): median follow-up (FU) after FTBI (1.285) and CC (213) was 6.8 and 6.1 years. Survivals were not significantly different. CR2 (1.556): median FU after FTBI (1.345) and CC (211) was 6.2 years. Outcomes after FTBI were superior as compared with CC with regard to overall survival (OS), leukemia-free survival (LFS), relapse incidence (RI), and nonrelapse mortality (NRM). However, we must emphasize the preliminary character of the results of this retrospective "real-world-practice" study. These findings will be prospectively assessed in the ALL SCTped 2012 FORUM trial.Transplantation and immunomodulatio
- …
