181 research outputs found
Atmospheric confinement of jet streams on Uranus and Neptune
The observed cloud-level atmospheric circulation on the outer planets of the Solar System is dominated by strong east–west jet streams. The depth of these winds is a crucial unknown in constraining their overall dynamics, energetics and internal structures. There are two approaches to explaining the existence of these strong winds. The first suggests that the jets are driven by shallow atmospheric processes near the surface, whereas the second suggests that the atmospheric dynamics extend deeply into the planetary interiors. Here we report that on Uranus and Neptune the depth of the atmospheric dynamics can be revealed by the planets’ respective gravity fields. We show that the measured fourth-order gravity harmonic, J_4, constrains the dynamics to the outermost 0.15 per cent of the total mass of Uranus and the outermost 0.2 per cent of the total mass of Neptune. This provides a stronger limit to the depth of the dynamical atmosphere than previously suggested, and shows that the dynamics are confined to a thin weather layer no more than about 1,000 kilometres deep on both planets
Chern-Simons Theory and the Quark-Gluon Plasma
The generating functional for hard thermal loops in QCD is important in
setting up a resummed perturbation theory, so that all terms of a given order
in the coupling constant can be consistently taken into account. It is also the
functional which leads to a gauge invariant description of Debye screening and
plasma waves in the quark-gluon plasma. We have recently shown that this
functional is closely related to the eikonal for a Chern-Simons gauge theory.
In this paper, this relationship is explored and explained in more detail,
along with some generalizations.Comment: 28 pages (4 Feynman diagrams not included, available upon request
The Use of Artificial Neural Networks in Prediction of Congenital CMV Outcome from Sequence Data
A large number of CMV strains has been reported to circulate in the human population, and the biological significance of these strains is currently an active area of research. The analysis of complex genetic information may be limited using conventional phylogenetic techniques
The Interior of Saturn
We review our current understanding of the interior structure and thermal evolution of Saturn, with a focus on recent results in the Cassini era. There has been important progress in understanding physical inputs, including equations of state of planetary materials and their mixtures, physical parameters like the gravity field and rotation rate, and constraints on Saturnian free oscillations. At the same time, new methods of calculation, including work on the gravity field of rotating fluid bodies, and the role of interior composition gradients, should help to better constrain the state of Saturn's interior, now and earlier in its history. However, a better appreciation of modeling uncertainties and degeneracies, along with a greater exploration of modeling phase space, still leave great uncertainties in our understanding of Saturn's interior. Further analysis of Cassini data sets, as well as precise gravity field measurements from the Cassini Grand Finale orbits, will further revolutionize our understanding of Saturn's interior over the next few years
Searching for Giant Exoplanets around M-dwarf Stars (GEMS) I: Survey Motivation
Recent discoveries of transiting giant exoplanets around M-dwarf stars
(GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories
of planet formation through the core-accretion scenario. Recent upper limits on
their occurrence suggest that they decrease with lower stellar masses, with
fewer GEMS around lower-mass stars compared to solar-type. In this paper, we
discuss existing GEMS both through confirmed planets, as well as protoplanetary
disk observations, and a combination of tests to reconcile these with
theoretical predictions. We then introduce the \textit{Searching for GEMS}
survey, where we utilize multi-dimensional nonparameteric statistics to
simulate hypothetical survey scenarios to predict the required sample size of
transiting GEMS with mass measurements to robustly compare their bulk-density
with canonical hot-Jupiters orbiting FGK stars. Our Monte-Carlo simulations
predict that a robust comparison requires about 40 transiting GEMS (compared to
the existing sample of 15) with 5- mass measurements.
Furthermore, we discuss the limitations of existing occurrence estimates for
GEMS, and provide a brief description of our planned systematic search to
improve the occurrence rate estimates for GEMS.Comment: 16 pages + references, including 7 figures. Accepted in AAS Journal
Searching for Giant Exoplanets around M-dwarf Stars (GEMS) I: Survey Motivation
Recent discoveries of transiting giant exoplanets around M-dwarf stars (GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories of planet formation through the core-accretion scenario. Recent upper limits on their occurrence suggest that they decrease with lower stellar masses, with fewer GEMS around lower-mass stars compared to solar-type. In this paper, we discuss existing GEMS both through confirmed planets, as well as protoplanetary disk observations, and a combination of tests to reconcile these with theoretical predictions. We then introduce the Searching for GEMS survey, where we utilize multidimensional nonparameteric statistics to simulate hypothetical survey scenarios to predict the required sample size of transiting GEMS with mass measurements to robustly compare their bulk-density with canonical hot Jupiters orbiting FGK stars. Our Monte Carlo simulations predict that a robust comparison requires about 40 transiting GEMS (compared to the existing sample of ∼15) with 5σ mass measurements. Furthermore, we discuss the limitations of existing occurrence estimates for GEMS and provide a brief description of our planned systematic search to improve the occurrence rate estimates for GEMS
Dynamo Simulations of Jupiter's Magnetic Field: The Role of Stable Stratification and a Dilute Core
Understanding Jupiter's present-day interior structure and dynamics is key to constraining planetary accretion models. In particular, the extent of stable stratification (i.e., non-convective regions) in the planet strongly influences long-term cooling processes, and may record primordial heavy element gradients from early in a planet's formation. Because the Galileo entry probe measured a subsolar helium abundance, Jupiter interior models often invoke an outer stably stratified region due to helium rain. Additionally, Juno gravity data suggest a deeper, potentially stratified dilute core extending halfway through the planet. However, fits to Jupiter's gravitational data are non-unique, and outstanding uncertainty over the equations of state for hydrogen and helium remain. Here, we use high-resolution numerical magnetohydrodynamic simulations of Jupiter's magnetic field to place constraints on the extent of stable stratification within the planet. We find that compared to traditional interior models, an upper stably stratified layer between 0.9 and 0.95 Jupiter radii (RJ) helps to explain both Jupiter's dipolar magnetic field and zonal winds. In contrast, an extended dilute core that is entirely stably stratified (no convective layers) yields significantly worse fits to both. However, our models with extended deep stratification still generate dipolar magnetic fields if an upper stratified region is also present. Overall, we find that a planet with a dilute core i.e., strongly stably stratified is increasingly challenging to reconcile with Jupiter's magnetic field and winds. Thus if a dilute core is present, alternative modalities such as a fully convective dilute core, a complex multilayered interior structure, or double diffusive convection may be required
Keys of a Mission to Uranus or Neptune, the Closest Ice Giants
Uranus and Neptune are the archetypes of "ice giants", a class of planets that may be among the most common in the Galaxy. They are the last unexplored planets of the Solar System, yet they hold the keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres inside and outside the solar system
Population of giant planets around B stars from the first part of the BEAST survey
Exoplanets form from circumstellar protoplanetary disks whose fundamental properties (notably their extent, composition, mass, temperature, and lifetime) depend on the host star properties, such as their mass and luminosity. B stars are among the most massive stars and their protoplanetary disks test extreme conditions for exoplanet formation. This paper investigates the frequency of giant planet companions around young B stars (median age of 16 Myr) in the Scorpius-Centaurus (Sco-Cen) association, the closest association containing a large population of B stars. We systematically searched for massive exoplanets with the high-contrast direct imaging instrument SPHERE using the data from the BEAST survey, which targets a homogeneous sample of young B stars from the wide Sco-Cen association. We derived accurate detection limits in the case of non-detections. We found evidence in previous papers for two substellar companions around 42 stars. The masses of these companions are straddling the sim 13 Jupiter mass deuterium burning limit, but their mass ratio with respect to their host star is close to that of Jupiter. We derived a frequency of such massive planetary-mass companions around B stars of 11_ , accounting for the survey sensitivity. The discoveries of substellar companions b and B happened after only a few stars in the survey had been observed, raising the possibility that massive Jovian planets might be common around B stars. However, our statistical analysis shows that the occurrence rate of such planets is similar around B stars and around solar-type stars of a similar age, while B-star companions exhibit low mass ratios and a larger semi-major axis
TOI-2374 b and TOI-3071 b: two metal-rich sub-Saturns well within the Neptunian desert
We report the discovery of two transiting planets detected by the Transiting Exoplanet Survey Satellite (TESS), TOI-2374 b and TOI-3071 b, orbiting a K5V and an F8V star, respectively, with periods of 4.31 and 1.27 d, respectively. We confirm and characterize these two planets with a variety of ground-based and follow-up observations, including photometry, precise radial velocity monitoring and high-resolution imaging. The planetary and orbital parameters were derived from a joint analysis of the radial velocities and photometric data. We found that the two planets have masses of (57 ± 4) M⊕ or (0.18 ± 0.01) MJ, and (68 ± 4) M⊕ or (0.21 ± 0.01) MJ, respectively, and they have radii of (6.8 ± 0.3) R⊕ or (0.61 ± 0.03) RJ and (7.2 ± 0.5) R⊕ or (0.64 ± 0.05) RJ, respectively. These parameters correspond to sub-Saturns within the Neptunian desert, both planets being hot and highly irradiated, with Teq ≈ 745 K and Teq ≈ 1812 K, respectively, assuming a Bond albedo of 0.5. TOI-3071 b has the hottest equilibrium temperature of all known planets with masses between 10 and 300 M⊕ and radii less than 1.5 RJ. By applying gas giant evolution models we found that both planets, especially TOI-3071 b, are very metal-rich. This challenges standard formation models which generally predict lower heavy-element masses for planets with similar characteristics. We studied the evolution of the planets’ atmospheres under photoevaporation and concluded that both are stable against evaporation due to their large masses and likely high metallicities in their gaseous envelopes
- …
