2,670 research outputs found

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Field induced magnetic transition and metastability in Co substituted Mn2SbMn_{2}Sb

    Get PDF
    A detailed investigation of first order ferrimagnetic (FRI) to antiferromagnetic (AFM) transition in Co (15%) doped Mn2SbMn_2Sb is carried out. These measurements demonstrate anomalous thermomagnetic irreversibility and glass-like frozen FRI phase at low temperatures. The irreversibility arising between the supercooling and superheating spinodals is distinguised in an ingenious way from the irreversibility arising due to kinetic arrest. Field annealing measurements shows reentrant FRI-AFM-FRI transition with increasing temperature. These measurements also show that kinetic arrest band and supercooling band are anitcorrelated i.e regions which are kinetically arrested at higher temperature have lower supercooling temperature and vice versa.Comment: 10 pages, 8 figure

    Magnetoresistance behavior of a ferromagnetic shape memory alloy: Ni_1.75Mn_1.25Ga

    Full text link
    A negative-positive-negative switching behavior of magnetoresistance (MR) with temperature is observed in a ferromagnetic shape memory alloy Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative due to s-d scattering. Curiously, below 120K MR is positive, while at still lower temperatures in the martensitic phase, MR is negative again. The positive MR cannot be explained by Lorentz contribution and is related to a magnetic transition. Evidence for this is obtained from ab initio density functional theory, a decrease in magnetization and resistivity upturn at 120 K. Theory shows that a ferrimagnetic state with anti-ferromagnetic alignment between the local magnetic moments of the Mn atoms is the energetically favoured ground state. In the martensitic phase, there are two competing factors that govern the MR behavior: a dominant negative trend up to the saturation field due to the decrease of electron scattering at twin and domain boundaries; and a weaker positive trend due to the ferrimagnetic nature of the magnetic state. MR exhibits a hysteresis between heating and cooling that is related to the first order nature of the martensitic phase transition.Comment: 17 pages, 5 figures. Accepted in Phys. Rev.

    Neuroactive chondroitin sulfate glycomimetics

    Get PDF
    We report the generation of chondroitin sulfate (CS) glycomimetics with tunable chemical and biological properties. Our approach greatly simplifies the synthesis of complex glycosaminoglycans, providing synthetically accessible, bioactive structures of programmable sulfation sequence. Using these glycopolymers, we demonstrate that multivalent interactions are critical for modulating CS activity and discover an unexpected tolerance for unnatural polymeric architectures. We envision that these glycomimetics will facilitate further explorations into the influence of macromolecular structure on glycosaminoglycan function and provide powerful tools for manipulating CS activity in vivo

    End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans

    Get PDF
    Glycosaminoglycans are sulfated polysaccharides that play important roles in fundamental biological processes, such as cell division, viral invasion, cancer and neuroregeneration. The multivalent presentation of multiple glycosaminoglycan chains on proteoglycan scaffolds may profoundly influence their interactions with proteins and subsequent biological activity. However, the importance of this multivalent architecture remains largely unexplored, and few synthetic mimics exist for probing and manipulating glycosaminoglycan activity. Here, we describe a new class of end-functionalized ring-opening metathesis polymerization (ROMP) polymers that mimic the native-like, multivalent architecture found on chondroitin sulfate (CS) proteoglycans. We demonstrate that these glycopolymers can be readily integrated with microarray and surface plasmon resonance technology platforms, where they retain the ability to interact selectively with proteins. ROMP-based glycopolymers are part of a growing arsenal of chemical tools for probing the functions of glycosaminoglycans and for studying their interactions with proteins

    IMAGES II. A surprisingly low fraction of undisturbed rotating spiral disks at z~0.6: The morpho-kinematical relation 6 Gyrs ago

    Full text link
    We present a first combined analysis of the morphological and dynamical properties for the Intermediate MAss Galaxy Evolution Sequence (IMAGES) sample. It is a representative sample of 52 z~0.6 galaxies with Mstell from 1.5 to 15 10^10Msun and possessing 3D resolved kinematics and HST deep imaging in at least two broad band filters. We aim at evaluate robustly the evolution of rotating spirals since z~0.6, as well as to test the different schemes for classifying galaxies morphologically. We used all the information provided by multi-band images, color maps and 2 dimensional light fitting to assign to each object a morphological class. We divided our sample between spiral disks, peculiar objects, compact objects and mergers. Using our morphological classification scheme, 4/5 of identified spirals are rotating disks and more than 4/5 of identified peculiar galaxies show complex kinematics, while automatic classification methods such as Concentration-Asymmetry and GINI-M20 severely overestimate the fraction of relaxed disk galaxies. Using this methodology, we find that the fraction of rotating spirals has increased by a factor ~ 2 during the last 6 Gyrs, a much higher fraction that found previously based on morphologies alone. These rotating spiral disks are forming stars very rapidly, doubling their stellar masses over the last 6 Gyrs, while most of their stars have been formed few Gyrs earlier, which reveals the presence of a large gas supply. Because they are likely the progenitors of local spirals, we can conjecture how their properties are evolving. Their disks show some evidence for an inside-out growth and the gas supply/accretion is not made randomly as the disk need to be stable in order to match the local disk properties.Comment: Typos corrected, reference adde

    Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna-Warna seismoactive region, West India

    Get PDF
    A new approach is developed to find the source azimuth of the ultra low frequency (ULF) electromagnetic (EM) signals believed to be emanating from well defined seismic zone. The method is test applied on magnetic data procured from the seismoactive region of Koyna-Warna, known for prolonged reservoir triggered seismicity. Extremely low-noise, high-sensitivity LEMI-30 search coil magnetometers were used to measure simultaneously the vector magnetic field in the frequency range 0.001–32 Hz at two stations, the one located within and another ~100 km away from the seismic active zone. During the observation campaign extending from 15 March to 30 June 2006 two earthquakes (EQs) of magnitude (M<sub><I>L</I></sub>>4) occurred, which are searched for the presence of precursory EM signals. <br><br> Comparison of polarization ellipses (PE) parameters formed by the magnetic field components at the measurement stations, in select frequency bands, allows discrimination of seismo-EM signals from the natural background ULF signals of magnetospheric/ionospheric origin. The magnetic field components corresponding to spectral bands dominated by seismo-EM fields define the PE plane which at any instant contains the source of the EM fields. Intersection lines of such defined PE planes for distant observation stations clutter in to the source region. Approximating the magnetic-dipole configuration for the source, the magnetic field components along the intersection lines suggest that azimuth of the EM source align in the NNW-SSE direction. This direction well coincides with the orientation of nodal plane of normal fault plane mechanism for the two largest EQs recorded during the campaign. More significantly the correspondence of this direction with the tectonic controlled trend in local seismicity, it has been surmised that high pressure fluid flow along the fault that facilitate EQs in the region may also be the source mechanism for EM fields by electrokinetic effect
    corecore